Advertisement

Macromolecular Research

, Volume 27, Issue 11, pp 1136–1143 | Cite as

Improving Mechanical Properties and Thermal Conductivity of Styrene-Butadiene Rubber via Enhancing Interfacial Interaction Between Rubber and Graphene Oxide/Carbon Nanotubes Hybrid

  • Zhenghua Qian
  • Jianan Song
  • Zijin Liu
  • Zonglin PengEmail author
Article
  • 58 Downloads

Abstract

To fully utilize the fascinating comprehensive properties of graphene oxide (GO) and carbon nanotubes (CNTs), GO was used to promote the dispersion of carboxylated multi-walled carbon nanotubes (CC) in rubber matrix. Additionally, carboxylated acrylonitrile butadiene rubber (xNBR) was used to enhance the interfacial interaction between the styrene-butadiene rubber (SBR) and the GO/CC hybrid fillers for the formation of hydrogen bonds between the oxygenated functional groups of GO/CC hybrid fillers and the carboxyl groups of xNBR. Moreover, the interfacial interaction was investigated by Fourier transform infrared spectroscopy and further proved by differential scanning calorimetry. As a result, the mechanical property and thermal conductivity of SBR composites were improved significantly compared with the neat SBR vulcanizate, which were much higher than those of the SBR composites without xNBR. In contrast to adding GO/CNTs directly to the rubber matrix, enhancing the interfacial interaction between GO/CC hybrid fillers and rubber matrix as demonstrated herein is a valuable strategy to prepare rubber composites with remarkable comprehensive properties.

Keywords

styrene-butadiene rubber graphene oxide carboxylated multi-walled carbon nanotubes interfacial interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    H. Kang, Y. Tang, L. Yao, F. Yang, Q. Fang, and D. Hui, Compos. Part B-Eng., 112, 1 (2017).Google Scholar
  2. (2).
    S. K. Peddini, C. P. Bosnyak, N. M. Henderson, C. J. Ellison, and D. R. Paul, Polymer, 56, 443 (2015).Google Scholar
  3. (3).
    B. Zhong, H. Dong, Y. Luo, D. Zhang, Z. Jia, D. Jia, and F. Liu, Compos. Sci. Technol., 151, 156 (2017).Google Scholar
  4. (4).
    Y. Zhang, K. Y. Rhee, D. Hui, and S. Park, Compos. Part B-Eng., 143, 19 (2018).Google Scholar
  5. (5).
    J. Song, C. Chen, and Y. Zhang, Compos. Part A-Appl. S., 105, 1 (2018).Google Scholar
  6. (6).
    H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 6515 (2010).Google Scholar
  7. (7).
    J. Wang, X. Jin, H. Wu, and S. Guo, Carbon, 123, 502 (2017).Google Scholar
  8. (8).
    Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, and J. Kim, ACS Appl. Mater. Inter., 7, 5538 (2015).Google Scholar
  9. (9).
    X. Bai, C. Wan, Y. Zhang, and Y. Zhai, Carbon, 49, 1608 (2011).Google Scholar
  10. (10).
    H. Kang, K. Zuo, Z. Wang, L. Zhang, L. Liu, and B. Guo, Compos. Sci. Technol., 92, 1 (2014).Google Scholar
  11. (11).
    A. Laskowska, A. Marzec, M. Zaborski, and G. Boiteux, J. Polym. Eng., 34, 883 (2014).Google Scholar
  12. (12).
    P. Liu, X. Zhang, H. Jia, Q. Yin, J. Wang, B. Yin, and Z. Xu, Compos. Part B-Eng, 130, 257 (2017).Google Scholar
  13. (13).
    Z. Tang, X. Liu, Y. Hu, X. Zhang, and B. Guo, Mater. Lett., 191, 93 (2017).Google Scholar
  14. (14).
    Z. Xie, X. Fu, L. Wei, M. Luo, Y. Liu, F. Ling, C. Huang, G. Huang, and J. Wu, Polymer, 118, 30 (2017).Google Scholar
  15. (15).
    B. Zhong, Z. Jia, H. Dong, Y. Luo, D. Jia, and F. Liu, Chem. Eng. J., 317, 51 (2017).Google Scholar
  16. (16).
    V. Kumar, X. Tang, S. Liu, and D. Lee, Sensor. Actuat. A-Phys., 267, 310 (2017).Google Scholar
  17. (17).
    H. H. Le, X. T. Hoang, A. Das, U. Gohs, K. W. Stoeckelhuber, R. Boadt, G. Heinrich, R. Adhikari, and H. J. Radusch, Carbon, 50, 4543 (2012).Google Scholar
  18. (18).
    A. Mohamed, A. K. Anas, S. A. Bakar, T. Ardyani, W. M. Zin, S. Ibrahim, M. Sagisaka, P. Brown, and J. Eastoe, J. Colloid Interfaces Sci., 455, 179 (2015).Google Scholar
  19. (19).
    A. Mohamed, A. K. Anas, S. A. Bakar, A. A. Aziz, M. Sagisaka, P. Brown, J. Eastoe, A. Kamari, N. Hashim, and I. M. Isa, Colloid. Polym. Sci., 292, 3013 (2014).Google Scholar
  20. (20).
    D. Ponnamma, S. H. Sung, J. S. Hong, K H. Ahn, K. T. Varughese, and S. Thomas, Eur. Polym. J., 53, 147 (2014).Google Scholar
  21. (21).
    J. Y. Oh, G. H. Jun, S. Jin, H. J. Ryu, and S. H. Hong, ACS Appl. Mater. Inter., 8, 3319 (2016).Google Scholar
  22. (22).
    L. Wei, X. Fu, M. Luo, Z. Xie, C. Huang, J. Zhou, Y. Zhu, G. Huang, and J. Wu, RSC Adv., 8, 10573 (2018).Google Scholar
  23. (23).
    J. Y. Oh, Y. S. Kim, Y. Jung, S. J. Yang, and C. R. Park, ACS Nano, 10, 2184 (2016).PubMedGoogle Scholar
  24. (24).
    S. Wu, L. Zhang, P. Weng, Z. Yang, Z. Tang, and B. Guo, Soft Matter, 12, 6893 (2016).PubMedGoogle Scholar
  25. (25).
    B. Li, S. Dong, X. Wu, C. Wang, X. Wang, and J. Fang, Compos. Sci. Technol., 147, 52 (2017).Google Scholar
  26. (26).
    Y. Li and H. Ishida, Maeromolecules, 38, 6513 (2005).Google Scholar
  27. (27).
    Y. Liu, M. Liu, S. Yang, B. Luo, and C. Zhou, ACS Sustain. Chem. Eng., 6, 325 (2017).Google Scholar
  28. (28).
    F. Jia, L. Wu, J. Meng, M. Yang, H. Kong, T. Liu, and H. Xu, J. Mater. Chem., 19, 8950 (2009).Google Scholar
  29. (29).
    Q. Wang, W. Wu, H. Meng, J. Chen, G. Chu, and H. Zou, Colloid Surf. A, 443, 52 (2014).Google Scholar
  30. (30).
    J. D. Nunez, A. M. Benito, S. Rouziere, P. Launois, R. Arenal, P. M. Ajayan, and W. K. Maser, Chem. Sci., 8, 4987 (2017).PubMedPubMedCentralGoogle Scholar
  31. (31).
    J. Xu, L. Wang, and Y. Zhu, Langmuir, 28, 8418 (2012).PubMedGoogle Scholar
  32. (32).
    F. Wang, Y. Wu, and Y. Huang, Compos. Part A-Appl. S., 110, 126 (2018).Google Scholar
  33. (33).
    H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, and J. Zhao, Polymer, 53, 3378 (2012).Google Scholar
  34. (34).
    H. Li, L. Yang, G. Weng, W. Xing, J. Wu, and G. Huang, J. Mater. Chem. A, 3, 22385 (2015).Google Scholar
  35. (35).
    X. Xue, Q. Yin, H. Jia, X. Zhang, Y. Wen, Q. Ji, and Z. Xu, Appl. Surf. Sci., 423, 584 (2017).Google Scholar
  36. (36).
    L. Gan, S. Shang, and S. Jiang, Compos. Part B-Eng., 84, 294 (2016).Google Scholar
  37. (37).
    X. Cao, C. Xu, Y. Liu, and Y. Chen, Carbohydr. Polym., 92, 69 (2013).PubMedGoogle Scholar
  38. (38).
    B. Zhong, H. Dong, J. Lin, Z. Jia, Y. Luo, D. Jia, and F. Liu, Ind. Eng. Chem. Res., 56, 9135 (2017).Google Scholar
  39. (39).
    J. Shen, T. Li, Y. Long, N. Li, and M. Ye, Soft Mater, 11, 326 (2013).Google Scholar
  40. (40).
    Y. Hu, J. Shen, N. Li, H. Ma, M. Shi, B. Yan, W. Huang, W. Wang, and M. Ye, Compos. Sci. Technol., 70, 2176 (2010).Google Scholar
  41. (41).
    S. Ganguli, A. K. Roy, and D. P. Anderson, Carbon, 46, 806 (2008).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Zhenghua Qian
    • 1
  • Jianan Song
    • 1
  • Zijin Liu
    • 1
  • Zonglin Peng
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations