Controlling the Release Profile Through Phase Control of Calcium Phosphate-Alginate Core-shell Nanoparticles in Gene Delivery

  • Geunseon Ahn
  • Goosang Yu
  • Abdullah Abdullah
  • Yunna Kim
  • Donghyun LeeEmail author


In this study, we aimed to control the drug release rate from calcium phosphate-alginate (CaP-Alg) core-shell nanoparticle (NPs) using CaP phases (brushite (DCPD) [Bru] and hydroxyapatite [HA]) generated under different pH conditions. Core-shell NPs consisted of an inorganic CaP core and an organic Alg shell and were synthesized by the water-in-oil emulsification and precipitation method. CaP-Alg NPs were synthesized under different pH conditions, resulting in the mineralization of CaP with Bru and HA in the core region of core-shell NPs. Albumin-fluorescein isothiocyanate conjugate (FITC-BSA) was used as a model drug for in-vitro drug release studies. CaP-Alg (Bru-Alg and HA-Alg) NPs exhibited a higher loading capacity and encapsulation efficiency than Ca-Alg NPs. The release behavior of synthesized core-shell NPs showed different patterns due to the pH-sensitivity of Alg and CaP. At physiological pH, Ca-Alg NPs exhibited an initial burst release behavior, while CaP-Alg showed controlled release behavior. Our results demonstrate that HA-Alg NPs are more suitable for controlled intracellular delivery while Bru-Alg NPs are more suitable for extracellular compartment delivery. Therefore, CaP-Alg NPs could be potential candidates for controlled gene and biomolecule delivery into cells for therapeutic purposes.


alginate calcium phosphate core-shell nanoparticle controlled release hydroxyapatite DCPD brushite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    N. K. Mohtaram, A. Montgomery, and S. M. Willerth, Biomed. Mater., 8, 22001 (2013).CrossRefGoogle Scholar
  2. (2).
    K. Lee, E. A. Silva, and D. J. Mooney, J. R. Soc. Interface, 8, 153 (2011).CrossRefGoogle Scholar
  3. (3).
    L. D. Huyer, M. Montgomery, Y. Zhao, Y. Xiao, G. Conant, A. Korolj, and M. Radisic, Biomed. Mater., 10, 034004 (2015).CrossRefGoogle Scholar
  4. (4).
    Y. L. Fang, X. G. Chen, and W. T. Godbey, J. Biomed. Mater. Res. B, 103, 1679 (2015).CrossRefGoogle Scholar
  5. (5).
    S. Jebahi, H. Oudadesse, G. Ben Saleh, M. Saoudi, S. Mesadhi, T. Rebai, H. Keskes, A. el Feki, and H. el Feki, Korean J. Chem. Eng., 31, 1616 (2014).CrossRefGoogle Scholar
  6. (6).
    U. Park and K. Kim, Biotechnol. Bioproc. E., 22, 659 (2017).CrossRefGoogle Scholar
  7. (7).
    M. Tran and C. Wang, Front. Chem. Sci. Eng., 8, 225 (2014).CrossRefGoogle Scholar
  8. (8).
    S. J. Hollister, Nat. Mater., 4, 518 (2005).CrossRefGoogle Scholar
  9. (9).
    G. A. Silva, P. Ducheyne, and R. L. Reis, J. Tissue Eng. Regen. Med., 1, 4 (2007).CrossRefGoogle Scholar
  10. (10).
    A. Z. Wang, F. Gu, L. Zhang, J. M. Chan, A. Radovic-Moreno, M. R. Shaikh, and O. C. Farokhzad, Expert Opin. Biol. Ther., 8, 1063 (2008).CrossRefGoogle Scholar
  11. (11).
    S. Zhang and H. Uludag, Pharm. Res., 26, 1561 (2009).CrossRefGoogle Scholar
  12. (12).
    R. C. Thomson, M. C. Wake, M. J. Yaszemski, and A. G. Mikos, in Biopolymers II, Springer Berlin Heidelberg, pp. 245–274.Google Scholar
  13. (13).
    C. C. Lin and A. T. Metters, Adv. Drug Deliv. Rev., 58, 1379 (2006).CrossRefGoogle Scholar
  14. (14).
    S. Srouji, T. Kizhner, E. Suss-Tobi, E. Livne, and E. Zussman, J. Mater. Sci. Mater. Med., 19, 1249 (2008).CrossRefGoogle Scholar
  15. (15).
    K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. F. Clark, Biomaterials, 28, 671 (2007).CrossRefGoogle Scholar
  16. (16).
    J. Jang, H. Oh, J. Lee, T. H. Song, Y. Hun Jeong, and D. W. Cho, Appl. Phys. Lett., 102, 211914 (2013).CrossRefGoogle Scholar
  17. (17).
    S. Suzuki, T. A. Asoh, and A. Kikuchi, J. Biomed. Mater. Res. A, 101 A, 1345 (2013).CrossRefGoogle Scholar
  18. (18).
    B. Mandal, H. Bhattacharjee, N. Mittal, H. Sah, P. Balabathula, L. A. Thoma, and G. C. Wood, Nanomed. Nanotechnol. Biol. Med., 9, 474 (2013).CrossRefGoogle Scholar
  19. (19).
    N. Paradee, A. Sirivat, S. Niamlang, and W. Prissanaroon-Ouajai, J. Mater. Sci. Mater. Med., 23, 999 (2012).CrossRefGoogle Scholar
  20. (20).
    X. Zhao, X. Ding, Z. Deng, Z. Zheng, Y. Peng, and X. Long, Macromol. Rapid Commun., 26, 1784 (2005).CrossRefGoogle Scholar
  21. (21).
    A. M. Dumitrescu, T. Slatineanu, A. Poiata, A. R. Iordan, C. Mihailescu, and M. N. Palamaru, Colloids Surfaces A Physicochem. Eng. Asp., 455, 185 (2014).CrossRefGoogle Scholar
  22. (22).
    D. Lee, K. Upadhye, and P. N. Kumta, Mater. Sci. Eng. B, 177, 289 (2012).CrossRefGoogle Scholar
  23. (23).
    B. Mostaghaci, B. Loretz, and C.-M. Lehr, Curr. Pharm. Des., 22, 1529 (2016).CrossRefGoogle Scholar
  24. (24).
    Y. Xie, Y. Chen, M. Sun, and Q. Ping, Curr. Pharm. Biotechnol., 14, 918, (2013).CrossRefGoogle Scholar
  25. (25).
    D. Olton, J. Li, M. E. Wilson, T. Rogers, J. Close, L. Huang, P. N. Kumta, and C. Sfeir, Biomaterials, 28, 1267 (2007).CrossRefGoogle Scholar
  26. (26).
    S. H. Chen, C. H. Chen, K. T. Shalumon, and J. P. Chen, Int. J. Nanomedicine, 9, 4079 (2014).CrossRefGoogle Scholar
  27. (27).
    S.-J. Ahn, Y. M. Shin, S. E. Kim, S. I. Jeong, J.-O. Jeong, J.-S. Park, H.-J. Gwon, D. E. Seo, Y.-C. Nho, S. S. Kang, C.-Y. Kim, J.-B. Huh, and Y.-M. Lim, Biotechnol. Bioproc. E., 20, 948 (2015).CrossRefGoogle Scholar
  28. (28).
    Y. Amini, B. Moradi, M. Tafaghodi, Z. Meshkat, K. Ghazvini, and M. Fasihi-Ramandi, Biotechnol. Bioproc. E., 21, 653 (2016).CrossRefGoogle Scholar
  29. (29).
    Y. M. Shin, J. S. Park, S. I. Jeong, S. J. An, H. J. Gwon, Y. M. Lim, Y. C. Nho, and C. Y. Kim, Biotechnol. Bioproc. E., 19, 341 (2014).CrossRefGoogle Scholar
  30. (30).
    G. Ciobanu, M. Harja, L. Rusu, A. M. Mocanu, and C. Luca, Korean J. Chem. Eng., 31, 1021 (2014).CrossRefGoogle Scholar
  31. (31).
    S. Huang and X. Fu, J. Control. Release, 142, 149 (2010).CrossRefGoogle Scholar
  32. (32).
    V. Uskokovic and T. A. Desai, J. Biomed. Mater. Res. A, 101A, 1427 (2013).CrossRefGoogle Scholar
  33. (33).
    J. Yang, J. Chen, D. Pan, Y. Wan, and Z. Wang, Carbohydr. Polym., 92, 719 (2013).CrossRefGoogle Scholar
  34. (34).
    I. Lévêque, K. H. Rhodes, and S. Mann, J. Mater. Chem., 12, 2178 (2002).CrossRefGoogle Scholar
  35. (35).
    Y. H. Liang, C. H. Liu, S. H. Liao, Y. Y. Lin, H. W. Tang, S. Y. Liu, I. R. Lai, and K. C. W. Wu, ACS Appl. Mater. Interfaces, 4, 6720 (2012).CrossRefGoogle Scholar
  36. (36).
    J. Xie, C. Riley, M. Kumar, and K. Chittur, Biomaterials, 23, 3609 (2002).CrossRefGoogle Scholar
  37. (37).
    M. S. Lee, J. E. Lee, E. Byun, N. W. Kim, K. Lee, H. Lee, S. J. Sim, D. S. Lee, and J. H. Jeong, J. Control. Release, 192, 122 (2014).CrossRefGoogle Scholar
  38. (38).
    V. Uskokovic and D. P. Uskokovic, J. Biomed. Mater. Res. B, 96, 152 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Geunseon Ahn
    • 1
  • Goosang Yu
    • 1
  • Abdullah Abdullah
    • 1
  • Yunna Kim
    • 1
  • Donghyun Lee
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, School of Integrative EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations