Reversible Coordinative Chain Transfer Polymerization of Butadiene Using a Neodymium Phosphonate Catalyst

  • Zhengwei TangEmail author
  • Aimin Liang
  • Handong Liang
  • Jiangwei Zhao
  • Lin Xu
  • Jie Zhang


This study involves an investigation of the chain transfer reaction of butadiene (Bd) polymerization, under the neodymium tris[bis(2-ethylhexyl)phosphate] (Nd)/diisobutyl aluminum hydride (Al)/ethylaluminum sesquichloride (Cl)/Bd catalytic system. The results show that the chain transfer reaction itself is reversible. Only chain propagation and chain exchange reactions occurred during the later period of polymerization, and there was a linear relationship between the molecular weight and the conversion rate. All polymer chains showed sufficient reactivity to propagate by reacting with the monomer. The degree of the chain transfer reaction can be determined by the amount of Al, and the molecular weight in the synthetic polybutadiene can be accurately designed by the formula Mn=54·Bd/Nd/(0.67Al/Nd-7.17). The catalyst-polymerized butadiene afforded products featuring a relatively narrow molecular weight distribution and a high cis-1,4 stereospecificity. One of these products, polybutadiene rubber, showed narrow distribution in the sample, and exhibited good physical and mechanical properties, low abrasion, and low rolling resistance.


phosphonate neodymium butadiene chain transfer molecular weight distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. B. Amin and T. J. Marks, Angew. Chem. Int. Ed., 47, 2006 (2010).CrossRefGoogle Scholar
  2. (2).
    F. R. Mayo, J. Am. Chem. Soc., 65, 11 (1943).CrossRefGoogle Scholar
  3. (3).
    N. Naga and K. Mizunuma, Polymer, 39, 5059 (1998).CrossRefGoogle Scholar
  4. (4).
    H. Mori, K. Tashino, and M. Terano, Macromol. Rapid Commun., 16, 651 (2010).CrossRefGoogle Scholar
  5. (5).
    L. Friebe, O. Nuyken, H. Windisch, and W. Obrecht, Macromol. Chem. Phys., 203, 1055 (2002).CrossRefGoogle Scholar
  6. (6).
    F. Wang, H. Liu, W. Zheng, J. Guo, C. Zhang, L. Zhao, H. Zhang, Y. Hu, C. Bai, and X. Zhang, Polymer, 54, 6716 (2013).CrossRefGoogle Scholar
  7. (7).
    R. Kempe, Chemistry — A European Journal, 13, 2764 (2010).CrossRefGoogle Scholar
  8. (8).
    A. Valente, A. Mortreux, M. Visseaux, and P. Zinck, Chemical Reviews, 113, 3836 (2013).CrossRefGoogle Scholar
  9. (9).
    P. Zinck, Polym. Int., 61, 2 (2015).CrossRefGoogle Scholar
  10. (10).
    R. Ribeiro, R. Rui, H. Nsiri, S. Norsic, F. D’Agosto, L. Perrin, and C. Boisson, ACS Catal., 6, 851 (2017).CrossRefGoogle Scholar
  11. (11).
    I. Belaid, M.N. Poradowski, S. Bouaouli, J. Thuilliez, L. Perrin, F. D’Agosto, and C. Boisson, Organometallics, 37, 1546 (2018).CrossRefGoogle Scholar
  12. (12).
    F. Wang, H. Liu, Y.M. Hu, and X.Q. Zhang, Sci. China Technol. Sci., 37, 1 (2018).Google Scholar
  13. (13).
    R. N. Kularatne, A. Yang, H. Q. Nguyen, G. T. Mccandless, and M. C. Stefan, Macromol. Rapid Commun., 38 (2017).Google Scholar
  14. (14).
    J. Liu, X. Fan, X. Min, X. Zhu, N. Zhao, and Z. Wang, RSC Adv., 8, 21926 (2018).CrossRefGoogle Scholar
  15. (15).
    D. C. D. Nath, C. M. Fellows, and T. Shiono, Macromol. Res., 14, 338 (2006).CrossRefGoogle Scholar
  16. (16).
    E. G. Samsel, Eur Patent 0539876 (1993).Google Scholar
  17. (17).
    P. Zinck, A. Valente, F. Bonnet, A. Violante, A. Mortreux, M. Visseaux, S. Ilinca, R. Duchateau, and P. Roussel, J. Polym. Sci., Part A: Polym. Chem., 48, 802 (2010).CrossRefGoogle Scholar
  18. (18).
    T. Chenal and M. Visseaux, Macromolecules, 45, 5718 (2012).CrossRefGoogle Scholar
  19. (19).
    A. Valente, P. Zinck, A. Mortreux, and M. Visseaux, J. Polym. Sci., Part A: Polym. Chem., 49, 1615 (2015).CrossRefGoogle Scholar
  20. (20).
    L. Annunziata, M. Duc, and J. F. Carpentier, Macromolecules, 44, 7158 (2011).CrossRefGoogle Scholar
  21. (21).
    Z. Jian, D. Cui, Z. Hou, and X. Li, Chem. Commun., 46, 3022 (2010).CrossRefGoogle Scholar
  22. (22).
    C. Fan, C. Bai, H. Cai, Q. Dai, X. Zhang, and F. Wang, J. Polym. Sci., Part A: Polym. Chem., 48, 4768 (2010).CrossRefGoogle Scholar
  23. (23).
    L. Friebe, O. Nuyken, H. Windisch, and W. Obrecht, Macromol. Mater. Eng., 288, 484 (2003).CrossRefGoogle Scholar
  24. (24).
    F. Wang, C. Y. Zhang, Y. M. Hu, X. Y. Jia, C. X. Bai, and X. Q. Zhang, Polymer, 53, 6027 (2012).CrossRefGoogle Scholar
  25. (25).
    F. Wang, B. Dong, H. Liu, J. Guo, W. Zheng, C. Zhang, L. Zhao, C. Bai, Y. Hu, and X. Zhang, Macromol. Chem. Phys., 216, 321 (2015).CrossRefGoogle Scholar
  26. (26).
    W. Zheng, N. Yan, Y. Zhu, W. Zhao, C. Zhang, H. Zhang, C. Bai, Y. Hu, and X. Zhang, Polym. Chem., 6, 6088 (2015).CrossRefGoogle Scholar
  27. (27).
    Z. Tang, CN Patent 201810235018 (2018).Google Scholar
  28. (28).
    J. Zhao, H. Zhu, Y. Wu, R. Jian, W. Yang, and G. Wu, Acta Polymerica Sinica, 10, 211 (2010).CrossRefGoogle Scholar
  29. (29).
    J. E. Mark, Polym. Compos., 191, 121 (2003).Google Scholar
  30. (30).
    O. Taikum and H. D. Luginsland, Rubber World, 230, 30 (2004).Google Scholar
  31. (31).
    S. N. Ratner, Abrasion of Rubber, Maclaren and Sons Limited, London, 1967.Google Scholar
  32. (32).
    G. Kwag, Macromol. Res., 18, 533 (2010).CrossRefGoogle Scholar
  33. (33).
    T. Mohanty, V. Bhandari, A. Chandra, P. Chattopadhyay, and S. Chattopadhyay, Polym. Compos., 34, 214 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Zhengwei Tang
    • 1
    • 2
    Email author
  • Aimin Liang
    • 2
  • Handong Liang
    • 1
  • Jiangwei Zhao
    • 2
  • Lin Xu
    • 2
  • Jie Zhang
    • 2
  1. 1.College of Chemistry and Environmental EngineeringChina University of Mining & Technology (Beijing)BeijingP. R. China
  2. 2.National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yan shan BranchSinopec Beijing Research Institute of Chemical IndustryBeijingP. R. China

Personalised recommendations