Biodegradable and Porous Poly(lactic-co-glycolic acid) Microbeads for In vitro Evaluation of Negatively Charged Fluorescent Bacteria

  • Tian Qiao
  • Soohyun Kim
  • Wonmok Lee
  • Hyunjung LeeEmail author


In this study, porous microbeads synthesized by water-oil-water [water/ oil/water (W1/O/W2)] double-emulsion solvent evaporation method exhibited immense potential as biocarriers for the attachment of bacteria. Poly(lactic-co-glycolic acid) (PLGA) was selected as a biodegradable, biocompatible material for fabricating porous microbeads. Ammonium bicarbonate and polyvinyl alcohol concentrations played a significant role in the modification of the microbead size. The microbead surface structure was modified by partial hydrolysis using sodium hydroxide to generate open pores on the surface and a more hydrophilic surface than PLGA itself. To examine the inner morphology of the microbeads, confocal laser scanning microscopy was employed in combination with rhodamine B during the fabrication of porous microbeads. Finally, the attachment of fluorescent bacteria to these porous microbeads was analyzed in terms of affinity between bacteria and porous PLGA microbeads. The affinity of microbeads to negatively charged bacteria was observed as a function of the charges of the PLGA microbead surfaces, indicating that surface-modified PLGA porous microbeads decorated with positively charged chitosan exhibit an enhanced affinity to negatively charged bacteria.


PLGA porous microbeads surface modification bacterial attachment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7104_MOESM1_ESM.pdf (827 kb)
Supporting Information


  1. (1).
    Z. Yan, C. Tian, X. Qu, W. Shen, and B. Ye, Colloid Surface B, 154, 142 (2017).CrossRefGoogle Scholar
  2. (2).
    C. Sun, R. Sun, Y. Chen, Y. Tong, J. Zhu, H. Bai, S. Zhang, H. Zheng, and H. Ye, Sens. Actuators B, 255, 775 (2018).CrossRefGoogle Scholar
  3. (3).
    S. Lee, Y.–L. Lee, B. Kim, K. Kwon, J. Park, K. Han, H. Lee, and W. Lee, Sens. Actuators B, 231, 256 (2016).CrossRefGoogle Scholar
  4. (4).
    S. Kim, S. G. Han, Y. G. Koh, H. Lee, and W. Lee, Sensors (Basel), 18, 1357 (2018).CrossRefGoogle Scholar
  5. (5).
    Z. Liao, Y. Zhang, L. Su, J. Chang, and H. Wang, J. Nanopart. Res., 19, 60 (2017).CrossRefGoogle Scholar
  6. (6).
    Y. Kabessa, O. Eyal, O. Bar–On, V. Korouma, S. Yagur–Kroll, S. Belkin, and A. J. Agranat, Biosens. Bioelectron., 79, 784 (2016).CrossRefGoogle Scholar
  7. (7).
    H. Turhan, E. Tukenmez, B. Karagoz, and N. Bicak, Talanta, 179, 107 (2018).CrossRefGoogle Scholar
  8. (8).
    W. Lu, S.A. Asher, Z. Meng, Z. Yan, M. Xue, L. Qiu, and D. Yi, J. Hazard. Mater., 316, 87 (2016).CrossRefGoogle Scholar
  9. (9).
    S. K. Sahoo, A. K. Panda, and V. Labhasetwar, Biomacromolecules, 6, 1132 (2005).CrossRefGoogle Scholar
  10. (10).
    Y. Senuma, S. Franceschin, J. Hilborn, P. Tissieres, I. Bisson, and P. Frey, Biomaterials, 21, 1135 (2000).CrossRefGoogle Scholar
  11. (11).
    S. L. Yao, Y. D. Yang, X. M. Wang, and L. N. Wang, Macromol. Res., 25, 528 (2017).CrossRefGoogle Scholar
  12. (12).
    J. E. Song, N. Tripathy, J. H. Shin, D. H. Lee, J. G. Cha, C. H. Park, D. S. Suh, and G. Khang, Macromol. Res., 25, 994 (2017).CrossRefGoogle Scholar
  13. (13).
    S.–W. Choi, Y. Zhang, Y.–C. Yeh, A. Lake Wooten, and Y. Xia, J. Mater. Chem., 22, 11442 (2012).CrossRefGoogle Scholar
  14. (14).
    H. K. Kim, H. J. Chung, and T. G. Park, J. Control. Release, 112, 167 (2006).CrossRefGoogle Scholar
  15. (15).
    X. Shi, J. Jiang, L. Sun, and Z. Gan, Colloid Surface B, 85, 73 (2011).CrossRefGoogle Scholar
  16. (16).
    S. M. Lim, H. J. Lee, S. H. Oh, J. M. Kim, and J. H. Lee, J. Biomed. Mater. Res. B, 90, 521 (2009).CrossRefGoogle Scholar
  17. (17).
    V. I. Sikavitsas, G. N. Bancroft, and A. G. Mikos, J. Biomed. Mater. Res. A, 62, 136 (2002).CrossRefGoogle Scholar
  18. (18).
    J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, and T. Okano, Biomaterials, 26, 6415 (2005).CrossRefGoogle Scholar
  19. (19).
    J. Ma, Y. S. Hui, M. Zhang, Y. Yu, W. Wen, and J. Qin, Small, 9, 497 (2013).CrossRefGoogle Scholar
  20. (20).
    T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee, and J. D. Keasling, J. Biol. Eng., 5, 12 (2011).Google Scholar
  21. (21).
    T. K. Kim, J. J. Yoon, D. S. Lee, and T. G. Park, Biomaterials, 27, 152 (2006).CrossRefGoogle Scholar
  22. (22).
    G. A. Van Aken, Colloids Surf. A, 190, 333 (2001).CrossRefGoogle Scholar
  23. (23).
    X. Shi, L. Sun, J. Jiang, X. Zhang, W. Ding, and Z. Gan, Macromol. Biosci., 9, 1211 (2009).CrossRefGoogle Scholar
  24. (24).
    J. M. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998).CrossRefGoogle Scholar
  25. (25).
    Y.–Y. Yang, T.–S. Chung, and N. P. Ng, Biomaterials, 22, 231 (2001).CrossRefGoogle Scholar
  26. (26).
    H. Jeffery, S. S. Davis, and D. T. O'hagan, Pharm. Res., 10, 362 (1993).CrossRefGoogle Scholar
  27. (27).
    Q. Wang, S. Jamal, M. S. Detamore, and C. Berkland, Mater. Res. Part A, 96, 520 (2011).CrossRefGoogle Scholar
  28. (28).
    Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, Mater. Chem. Phys., 125, 606 (2011).CrossRefGoogle Scholar
  29. (29).
    L. Wang, L. Zheng, C. Y. Li, S. J. Dong, A. Lan, and Y. M. Zhou, Biomed. Eng. Online, 12, 99 (2013).CrossRefGoogle Scholar
  30. (30).
    X. D. Yuan, B. A. Shah, N. K. Kotadia, J. Li, H. Gu, and Z. Q. Wu, Pharm. Res., 27, 1285 (2010).CrossRefGoogle Scholar
  31. (31).
    K. Zhao, Y. Zhang, X. Y. Zhang, C. Shi, X. Wang, X. H. Wang, J. Zheng, and S. J. Cui, Int. J. Nanomedicine, 9, 4609 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Tian Qiao
    • 1
  • Soohyun Kim
    • 1
  • Wonmok Lee
    • 2
  • Hyunjung Lee
    • 1
    Email author
  1. 1.School of Advanced Materials EngineeringKookmin Univ.SeoulKorea
  2. 2.Department of ChemistrySejong Univ.SeoulKorea

Personalised recommendations