Advertisement

Conversion of the Hydrophobic Surface of Polyurethane into a Hydrophilic Surface Using the Graft Polymerization of 2-(dimethylamino) ethyl Methacrylate and the Resulting Antifungal Effect

  • Yong-Chan Chung
  • Chul Ho Bae
  • Dong Eui Kim
  • Jae Won Choi
  • Byoung Chul ChunEmail author
Article
  • 20 Downloads

Abstract

A hydrophobic polyurethane (PU) was altered to obtain a hydrophilic characteristic using the graft polymerization of 2-(dimethylamino)ethyl methylmethacrylate (DAMA) onto the PU surface and the subsequent ionization of the dimethylamino group on poly(DAMA). The grafted poly(DAMA) chain influenced numerous properties, such as the cross-link density, thermal transitions of soft segments, and tensile and shape memory characteristics. The grafting of poly(DAMA) noticeably enhanced the breaking tensile stress and shape recovery capability through the cross-linking between the grafted poly(DAMA)s, but the breaking tensile strain and the shape retention did not noticeably decline after the grafting of poly(DAMA). Additionally, the poly(DAMA)-grafted PU exhibited a significant enhancement in its low temperature flexibility and antifungal effectiveness against a mixture of fungi.

Keywords

antifungal low-temperature flexibility graft polymerization surface modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. Tischer, G. Pradel, K. Ohlsen, and U. Holzgrabe, ChemMedChem, 7, 22 (2012).CrossRefGoogle Scholar
  2. (2).
    G. McDonnell and A. D. Russell, Clin. Microbiol. Rev., 12, 147 (1999).CrossRefGoogle Scholar
  3. (3).
    Y. Lin, Q. Liu, L. Cheng, Y. Lei, and A. Zhang, React. Funct. Polym., 85, 36 (2014).CrossRefGoogle Scholar
  4. (4).
    A. Zhang, Q. Liu, Y. Lei, S. Hong, and Y. Lin, React. Funct. Polym., 88, 39 (2015).CrossRefGoogle Scholar
  5. (5).
    S. M. Tawfik, A. A. Abd-Elaal, S. M. Shaban, and A. A. Roshdy, J. Ind. Eng. Chem., 30, 112 (2015).CrossRefGoogle Scholar
  6. (6).
    H. W. Kim, B. R. Kim, and Y. H. Rhee, Carbohyd. Polym., 79, 1057 (2010).CrossRefGoogle Scholar
  7. (7).
    Y. Jiao, L. Niu, S. M, J. Li, F. R. Tayd, and J. Chen, Prog. Polym. Sci., 71, 53 (2017).CrossRefGoogle Scholar
  8. (8).
    W. Jaeger, J. Bohrisch, and A. Laschewsky, Prog. Polym. Sci., 35, 511 (2010).CrossRefGoogle Scholar
  9. (9).
    C.-Y. Tu, Y.-L. Liu, K.-R. Lee, and J.-Y. Lai, Polymer, 46, 6976 (2005).CrossRefGoogle Scholar
  10. (10).
    C. Wang and J.-R. Chen, Appl. Surf. Sci., 253, 4599 (2007).CrossRefGoogle Scholar
  11. (11).
    B. Gupta, C. Plummera, I. Bisson, P. Frey, and J. Hilborn, Biomaterials, 23, 863 (2002).CrossRefGoogle Scholar
  12. (12).
    J. Deng, L. Wang, L. Liu, and W. Yang, Prog. Polym. Sci., 34, 156 (2009).CrossRefGoogle Scholar
  13. (13).
    C. S. Ren, D. Z. Wang, and Y. N. Wang, Surf. Coat. Tech., 201, 2867 (2006).CrossRefGoogle Scholar
  14. (14).
    H. Jingjing and X. Weilin, Appl. Surf. Sci., 256, 3921 (2010).CrossRefGoogle Scholar
  15. (15).
    H. Chunli, W. Miao, C. Xianmei, H. Xiaobo, L. Li, Z. Haomiao, S. Jian, and Y. Jiang, Appl. Surf. Sci., 258, 755 (2011).CrossRefGoogle Scholar
  16. (16).
    R. B. Seymour and G. B. Kauffman, J. Chem. Ed., 69, 909 (1992).CrossRefGoogle Scholar
  17. (17).
    H. W. Engels, H. G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish, Angew. Chem. Int. Ed., 52, 9422 (2013).CrossRefGoogle Scholar
  18. (18).
    R. J. Zdrahala and I. J. Zdrahala, J. Biomater. Appl., 14, 67 (1999).CrossRefGoogle Scholar
  19. (19).
    K. Tan and S. K. Obendorf, J. Membrane Sci., 274, 150 (2006).CrossRefGoogle Scholar
  20. (20).
    C. Freij-Larsson and B. Wesslen, J. Appl. Polym. Sci., 50, 345 (1993).CrossRefGoogle Scholar
  21. (21).
    K. Tan and S. K. Obendorf, J. Membrane Sci., 289, 199 (2007).CrossRefGoogle Scholar
  22. (22).
    Y. C. Chung, I. H. Jung, J. W. Choi, and B. C. Chun, Polym. Bull., 71, 1153 (2014).CrossRefGoogle Scholar
  23. (23).
    Y. C. Chung, N. D. Khiem, J. W. Choi, and B. C. Chun, J. Macromol. Sci. A, 51, 339 (2014).CrossRefGoogle Scholar
  24. (24).
    Y. C. Chung, H. Y. Kim, J. W. Choi, and B. C. Chun, Polym. Bull., 72, 2685 (2015).CrossRefGoogle Scholar
  25. (25).
    Y. C. Chung, S. H. Jo, and B. C. Chun, J. Macromol. Sci. A, 52, 425 (2015).CrossRefGoogle Scholar
  26. (26).
    Y. C. Chung, B. H. Lee, S. H. Jo, and B. C. Chun, Polym.-Plast. Technol., 54, 1066 (2015).CrossRefGoogle Scholar
  27. (27).
    S. M. Seyed Mohaghegh, M. Barikani, and A. A. Entezami, Colloid Surface A, 276, 95 (2006).CrossRefGoogle Scholar
  28. (28).
    Z. Su, Q. Li, Y. Liu, G. H. Hu, and C. Wu, Eur. Polym. J., 45, 2428 (2009).CrossRefGoogle Scholar
  29. (29).
    Y. C. Chung, H. Y. Kim, J. W. Choi, and B. C. Chun, J. Appl. Polym. Sci., 132, 41676 (2015).CrossRefGoogle Scholar
  30. (30).
    T. Choi, J. Weksler, A. Padsalgikar, and J. Runt, Polymer, 51, 4375 (2010).CrossRefGoogle Scholar
  31. (31).
    P. Russo, M. Lavorgna, F. Piscitelli, D. Acierno, and L. Di Maio, Eur. Polym. J., 49, 379 (2013).CrossRefGoogle Scholar
  32. (32).
    Y. C. Chung, H. S. Park, J. W. Choi, and B. C. Chun, High Perform. Polym., 24, 200 (2012).CrossRefGoogle Scholar
  33. (33).
    Y. C. Chung, D. K. Nguyen, and B. C. Chun, Polym. Eng. Sci., 50, 2457 (2010).CrossRefGoogle Scholar
  34. (34).
    A. N. Theodore and P. C. Killgoar Jr, US Patent 4853428 A (1987).Google Scholar
  35. (35).
    D. Nissen, H. U. Schmidt, W. Straehle, U. Schuett, and M. Marx, US Patent 4383050 A (1983).Google Scholar
  36. (36).
    M. D. Ellul, US Patent 5290886 A (1994).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Yong-Chan Chung
    • 1
  • Chul Ho Bae
    • 2
  • Dong Eui Kim
    • 2
  • Jae Won Choi
    • 2
  • Byoung Chul Chun
    • 2
    Email author
  1. 1.Department of ChemistryThe University of SuwonHwaseongKorea
  2. 2.School of Nano EngineeringInje UniversityGimhaeKorea

Personalised recommendations