Advertisement

A Convenient Dual-Side Anionic Initiator Based on 2,6-Luditine/s-Butyl Lithium

  • Wu Bin Ying
  • Na Yeong Ko
  • Chen Kai Yao
  • Nho Hoon Kwak
  • Ruoyu ZhangEmail author
  • Kyung Jin LeeEmail author
  • Bumjae LeeEmail author
Article
  • 5 Downloads

Abstract

A novel convenient dual-side initiator of lutidine dianion for anionic polymerization has been investigated in terms of their initiation and propagation kinetics. This lutidine dianion could be synthesized in quantitative yields reacting commercial products of 2,6-lutidine with sec-butyl lithium without any complex organic synthesis, and could be used effectively as the dual-side initiator to synthesize polyisoprene with various molecular weights via living anionic polymerization. In addition, this lutidine dianion can produce 50% of 1.4-microstructure contents in polyisoprene which is very important for elastomeric property of polydienes. All experimental evidences showed the living property and were consistent with quantitative yields without any side reactions when the anionic living polymerization proceeded using lutidine dianion as the initiator.

Keywords

living anionic polymerization dual-side initiator lutidine polyisoprene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. V. Theodosopoulos, C. M. Hurley, J. W. Mays, G. Sakellariou, and D. Baskaran, Polym. Chem., 7, 4090 (2016).CrossRefGoogle Scholar
  2. (2).
    T. C. Vasilakopoulos and N. Hadjichristidis, J. Polym. Sci. Pol. Chem., 51, 824 (2012).CrossRefGoogle Scholar
  3. (3).
    B. Liu, R. P. Quirk, C. Wesdemiotis, A. M. Yol, and M. D. Foster, Macromolecules, 45, 9233 (2012).CrossRefGoogle Scholar
  4. (4).
    A. R. Schultz, S. Bobade, P. J. Scott, and T. E. Long, Macromol. Chem. Phys., 219, 1700201 (2018).CrossRefGoogle Scholar
  5. (5).
    X. Wang, J. Xia, J. He, F. Yu, A. Li, J. Xu, H. Lu, and Y. Yang, Macromolecules, 39, 6898 (2006).CrossRefGoogle Scholar
  6. (6).
    H. Zhang, J. He, C. Zhang, Z. Ju, J. Li, and Y. Yang, Macromolecules, 45, 828 (2011).CrossRefGoogle Scholar
  7. (7).
    G. Riess and G. Hurtrez, in Encyclopedia of Polymer Science and Engineering, Wiley–Interscience, New York, 1985, p 324.Google Scholar
  8. (8).
    R. P. Quirk and J. J. Ma, Polym. Int., 24, 197 (1991).CrossRefGoogle Scholar
  9. (9).
    S. Bywater, in Encyclopedia of Polymer Science and Engineering, Wiley–Interscience, New York, 1985, p 1.Google Scholar
  10. (10).
    H. L. Hsieh and R. P. Quirk, in Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, p 110.CrossRefGoogle Scholar
  11. (11).
    Y. I. Estrin, A. E. Tarasov, A. A. Grishchuk, A. V. Chernyak, and E. R. Badamshina, RSC Adv., 6, 106064 (2016).Google Scholar
  12. (12).
    M. Huang, J. Lu, B. Han, J. Liu, H. Qiao, and L. Zhang, J. Appl. Polym. Sci., 134, 44923 (2017).Google Scholar
  13. (13).
    W. Lu, C. Huang, K. Hong, N. G. Kang, and J. W. Mays, Macromolecules, 49, 9406 (2016).CrossRefGoogle Scholar
  14. (14).
    I. Natori, S. Natori, N. Hanawa, and K. Ogino, Polymer, 91, 194 (2016).CrossRefGoogle Scholar
  15. (15).
    L. Hong, S. Yang, and J. He, Eur. Polym. J., 65, 171 (2015).CrossRefGoogle Scholar
  16. (16).
    W. B. Ying, J. U. Jang, M. W. Lee, H. S. Yang, K. J. Lee, and B. Lee, Polymer, 101, 158 (2016).CrossRefGoogle Scholar
  17. (17).
    G. Zapsas, D. Moschovas, K. Ntetsikas, S. Rangou, J. H. Lee, E. L. Thomas, N. E. Zafeiropoulos, and A. Avgeropoulos, J. Polym. Sci. Pol. Phys., 53, 1238 (2015).CrossRefGoogle Scholar
  18. (18).
    C. D. Jou, H. C. C. Hsieh, and R. C. C. Tsiang, Polymer, 38, 5869 (1997).CrossRefGoogle Scholar
  19. (19).
    Y. S. Yu, P. Dubois, R. Jérôme, and P. Teyssie, Macromolecules, 29, 1753 (1996).CrossRefGoogle Scholar
  20. (20).
    Y. S. Yu, P. Dubois, R. Jérôme, and P. Teyssie, Macromolecules, 29, 2738 (1996).CrossRefGoogle Scholar
  21. (21).
    Y. S. Yu, P. Dubois, R. Jérôme, and P. Teyssie, J. Polym. Sci. Pol. Chem., 34, 2221 (1996).CrossRefGoogle Scholar
  22. (22).
    Y. S. Yu, P. Dubois, R. Jérôme, and P. Teyssie, Macromolecules, 30, 7356 (1997).CrossRefGoogle Scholar
  23. (23).
    Y. S. Yu, R. Jérôme, R. Fayt, and P. Teyssie, Macromolecules, 27, 5957 (1994).CrossRefGoogle Scholar
  24. (24).
    G. G. Cameron and G. M. Buchan, Polymer, 20, 1129 (1979).CrossRefGoogle Scholar
  25. (25).
    H. L. Hsieh and R. P. Quirk, in Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, Inc., New York, 1996, p 17.CrossRefGoogle Scholar
  26. (26).
    K. B. Lipkowitz, C. Uhegbu, A. M. Naylor, and R. Vance, J. Comput. Chem., 6, 662 (1985).CrossRefGoogle Scholar
  27. (27).
    Q. Xu, L. Li, F. Guo, Z. Shi, H. Ma, Y. Wang, Y. Wang, and Y. Li, Polym. Eng. Sci., 54, 1858 (2014).CrossRefGoogle Scholar
  28. (28).
    T. A. Antkowiak, A. E. Oberster, A. F. Halasa, and D. P. Tate, J. Polym. Sci. Pol. Chem., 10, 1319 (1972).Google Scholar
  29. (29).
    R. P. Quirk and D. McFay, J. Polym. Sci. Pol. Chem., 24, 827 (1986).CrossRefGoogle Scholar
  30. (30).
    R. Werbowyj, S. Bywater, and D. J. Worsfold, Eur. Polym. J., 22, 707 (1986).CrossRefGoogle Scholar
  31. (31).
    W. B. Ying, J. U. Jang, M. W. Lee, T. S. Hwang, K. J. Lee, and B. Lee, J. Ind. Eng. Chem., 47, 128 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesZhenhai District, NingboP. R. China
  2. 2.Department of Fine Chemical Engineering and Applied Chemistry, College of EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations