Strategies for Fabrication of Hydrophobic Porous Materials Based on Polydimethylsiloxane for Oil-Water Separation

  • Kantappa Halake
  • Soomin Bae
  • Jiyoung Lee
  • Yunho Cho
  • Hongil Jo
  • Jowoong Heo
  • Kyungtae Park
  • Hyeongju Kim
  • Hyun Ju
  • Yongkyun Kim
  • Amirhosessein Hasani
  • Thuy Duong Pham
  • Jaeho Choi
  • Sohyeon Hong
  • Seongcheol Choi
  • Jonghwi LeeEmail author


In recent years, the challenge of efficient oil-water separation has become the subject of immense fundamental research, with significant impact in the development of industrial applications. This article reviews the recent progress in the fabrication of porous polydimethylsiloxane (PDMS) materials, which are the most widely investigated materials for oil-water separation. Various strategies for the fabrication of porous PDMS have produced a diversity of bulk and surface structures, where these structures in turn determine the performance of the materials for oil-water separation. Understanding the interrelationship governing the fabrication strategy, structure, and performance is essential for the development of future selective oil absorbents with improved commercial potential. The separation of organic contaminants from industrially produced wastewater is a serious environmental challenge, and the preparation of superior oil absorbents is critical for overcoming this challenge. To address the issues in the development of promising candidates as oil absorbents, the current strategies for the design of low-surface energy coatings of three-dimensionally (3-D) interconnected porous materials are also discussed. The reusability, surface roughness, and superhydrophobic properties are discussed as vital parameters.


oil-water separation oleophilic superhydrophobic hydrophilic graphene polydimethylsiloxane polysiloxane foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    V. Loosdrecht, M. CM, and D. Brdjanovic, Science, 344, 1452 (2014).CrossRefGoogle Scholar
  2. (2).
    J. Li, D. Li, Y. Yang, J. Li, F. Zha, and Z. Lei, Green Chem., 18, 541 (2016).CrossRefGoogle Scholar
  3. (3).
    B. Wang, Y. Wan, G. Zheng, and J. Hu, Environ. Sci. Technol., 50, 2956 (2016).CrossRefGoogle Scholar
  4. (4).
    C. Yu, C. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, and L. Jiang, Adv. Mater. Interfaces, 4, 1600862 (2017).CrossRefGoogle Scholar
  5. (5).
    M. Natter, J. Keevan, Y. Wang, A. R. Keimowitz, B. C. Okeke, A. Son, and M.-K. Lee, Env. Sci. Technol., 46, 5744 (2012).CrossRefGoogle Scholar
  6. (6).
    M. Bilal, T. Rasheed, H. M. N. Iqbal, and Y. Yan, Sci. Total Environ., 644, 1 (2018).CrossRefGoogle Scholar
  7. (7).
    S. Mohammadi, M. Homaee, and S.H. Sadeghi, Soil Tillage Res., 182, 1 (2018).CrossRefGoogle Scholar
  8. (8).
    M. Mahinroosta and A. Allahverdi, J. Environ. Manage., 223, 452 (2018).CrossRefGoogle Scholar
  9. (9).
    L. P. Mazur, M. A. P. Cechinel, S. M. A. G. U. de Souza, R. A. R. Boaventura, and V. J. P. Vilar, J. Environ. Manage., 223, 215 (2018).CrossRefGoogle Scholar
  10. (10).
    W. Gao, X. Yin, T. Mi, Y. Zhang, F. Lin, B. Han, X. Zhao, X. Luan, Z. Cui, and L. Zheng, AMB Express, 8, 79 (2018).CrossRefGoogle Scholar
  11. (11).
    R. Z. Liu, A. G. L. Borthwick, D. D. Lan, and W. H. Zeng, Process Saf. Environ. Prot., 91, 397 (2013).CrossRefGoogle Scholar
  12. (12).
    U. H. Yim, M. Kim, S. Y. Ha, S. Kim, and W. J. Shim, Environ. Sci. Technol., 46, 6431 (2012).CrossRefGoogle Scholar
  13. (13).
    B. Doshi, M. Sillanpää, and S. Kalliola, Water Res., 135, 262 (2018).CrossRefGoogle Scholar
  14. (14).
    Q. Lin, I. A. Mendelssohn, K. Carney, S. M. Miles, N. P. Bryner, and W. D. Walton, Environ. Sci. Technol., 39, 1855 (2005).CrossRefGoogle Scholar
  15. (15).
    E. Dislaki, J. Pokki, S. Pané, J. Sort, and E. Pellicer, Appl. Mater. Today, 12, 1 (2018).CrossRefGoogle Scholar
  16. (16).
    Q. Lin, I. A. Mendelssohn, K. Carney, N. P. Bryner, and W. D. Walton, Environ. Sci. Technol., 36, 576 (2002).CrossRefGoogle Scholar
  17. (17).
    Y. O. Fouad, Alexandria Eng. J., 53, 199 (2014).CrossRefGoogle Scholar
  18. (18).
    J. Guo, J. Wang, S. Zhang, X. Ma, Z. Qiu, X. Peng, J. Ying, Y. Wang, and G. Wu, New J. Chem., 41, 90 (2017).CrossRefGoogle Scholar
  19. (19).
    S. W. Han, E. J. Park, M.-G. Jeong, I. H. Kim, H. O. Seo, J. H. Kim, K.-D. Kim, and Y. D. Kim, Appl. Surf. Sci., 400, 405 (2017).CrossRefGoogle Scholar
  20. (20).
    A. Zhang, M. Chen, C. Du, H. Guo, H. Bai, and L. Li, ACS Appl. Mater. Interfaces, 5, 10201 (2013).CrossRefGoogle Scholar
  21. (21).
    R. Hosny, M. Fathy, M. Ramzi, T. Abdel Moghny, S. E. M. Desouky, and S. A. Shama, Egyptian J. Petroleum, 25, 391 (2016).CrossRefGoogle Scholar
  22. (22).
    J. E. F. Moraes, D. N. Silva, F. H. Quina, O. Chiavone-Filho, and C. A. O. Nascimento, Environ. Sci. Technol., 38, 3746 (2004).CrossRefGoogle Scholar
  23. (23).
    X. Su, H. Li, X. Lai, L. Zhang, T. Liang, Y. Feng, and X. Zeng, ACS Appl. Mater. Interfaces, 9, 3131 (2017).CrossRefGoogle Scholar
  24. (24).
    Z. Kang, S. Wang, L. Fan, Z. Xiao, R. Wang, and D. Sun, Mater. Lett., 189, 82 (2017).CrossRefGoogle Scholar
  25. (25).
    Y. Li, Z. Zhang, M. Wang, X. Men, and Q. Xue, J. Mater. Chem. A, 5, 5077 (2017).CrossRefGoogle Scholar
  26. (26).
    Y. Li, Z. Zhang, B. Ge, X. Men, and Q. Xue, Green Chem., 18, 5266 (2016).CrossRefGoogle Scholar
  27. (27).
    S.-J. Choi, T.-H. Kwon, H. Im, D.-I. Moon, D.J. Baek, M.-L. Seol, J.P. Duarte, and Y.-K. Choi, ACS Appl. Mater. Interfaces, 3, 4552 (2011).CrossRefGoogle Scholar
  28. (28).
    R. Zargar, J. Nourmohammadi, and G. Amoabediny, Biotechnol. Appl. Biochem., 63, 190 (2016).CrossRefGoogle Scholar
  29. (29).
    X. Liu, Y. Wang, Z. Chen, K. Ben, and Z. Guan, Appl. Surf. Sci., 360, 789 (2016).CrossRefGoogle Scholar
  30. (30).
    J. Saththasivam, W. Yiming, K. Wang, J. Jin, and Z. Liu, Sci. Rep., 8, 7418 (2018).CrossRefGoogle Scholar
  31. (31).
    E. E. Sann, Y. Pan, Z. Gao, S. Zhan, and F. Xia, Sep. Purif. Technol., 206, 186 (2018).CrossRefGoogle Scholar
  32. (32).
    C. F. Medina-Sandoval, J. A. Valencia-Dávila, M. Y. Combariza, and C. Blanco-Tirado, Fuel, 231, 297 (2018).CrossRefGoogle Scholar
  33. (33).
    C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, J. Mater. Chem. A, 4, 12179 (2016).CrossRefGoogle Scholar
  34. (34).
    S. Pengxiang, W. Jikui, Z. Cong, X. Heng, Y. Kun, W. Wenqi, Polym. Adv. Technol., 26, 1091 (2015).CrossRefGoogle Scholar
  35. (35).
    D. Zhu, S. Handschuh-Wang, and X. Zhou, J. Mater. Chem. A, 5, 16467 (2017).CrossRefGoogle Scholar
  36. (36).
    S. Zhang, J. Guo, X. Ma, X. Peng, Z. Qiu, J. Ying, and J. Wang, New J. Chem., 41, 8940 (2017).CrossRefGoogle Scholar
  37. (37).
    W. Liang, Y. Wang, H. Sun, P. Chen, Z. Zhu, and A. Li, RSC Adv., 5, 105319 (2015).CrossRefGoogle Scholar
  38. (38).
    Z. Wang, P. Jin, M. Wang, G. Wu, C. Dong, and A. Wu, ACS Appl. Mater. Interfaces, 8, 32862 (2016).CrossRefGoogle Scholar
  39. (39).
    C. Zhou, Z. Chen, H. Yang, K. Hou, X. Zeng, Y. Zheng, and J. Cheng, ACS Appl. Mater. Interfaces, 9, 9184 (2017).CrossRefGoogle Scholar
  40. (40).
    F. Chen, Y. Lu, X. Liu, J. Song, G. He, M. K. Tiwari, C.J. Carmalt, and I.P. Parkin, Adv. Funct. Mater., 27, 1702926 (2017).CrossRefGoogle Scholar
  41. (41).
    S. Kitagawa, Acc. Chem. Res., 50, 514 (2017).CrossRefGoogle Scholar
  42. (42).
    Q. Li, T. Duan, J. Shao, and H. Yu, J. Mater. Sci., 53, 11873 (2018).CrossRefGoogle Scholar
  43. (43).
    J. González-Rivera, R. Iglio, G. Barillaro, C. Duce, M. Tinè, and Polymers, 10, 616 (2018).CrossRefGoogle Scholar
  44. (44).
    S. Grant, V. J. Schacht, B. I. Escher, D. W. Hawker, and C. Gaus, Environ. Sci. Technol., 50, 3047 (2016).CrossRefGoogle Scholar
  45. (45).
    X. Zhao, L. Li, B. Li, J. Zhang, and A. Wang, J. Mater. Chem. A, 2, 18281 (2014).CrossRefGoogle Scholar
  46. (46).
    S. Qiu, H. Bi, X. Hu, M. Wu, Y. Li, and L. Sun, RSC Adv., 7, 10479 (2017).CrossRefGoogle Scholar
  47. (47).
    D. N. Tran, S. Kabiri, T. R. Sim, and D. Losic, Environ. Sci. Water Res. Technol., 1, 298 (2015).CrossRefGoogle Scholar
  48. (48).
    A. Turco, C. Malitesta, G. Barillaro, A. Greco, A. Maffezzoli, and E. Mazzotta, J. Mater. Chem. A, 3, 17685 (2015).CrossRefGoogle Scholar
  49. (49).
    C. Zhou, J. Feng, J. Cheng, H. Zhang, J. Lin, X. Zeng, and P. Pi, Ind. Eng. Chem. Res., 57, 1059 (2018).CrossRefGoogle Scholar
  50. (50).
    C. Yu, C. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, and L. Jiang, Adv. Mater. Interfaces, 4 (2017).Google Scholar
  51. (51).
    S. Halake and K. M. Ok, J. Solid State Chem., 231, 132 (2015).CrossRefGoogle Scholar
  52. (52).
    X. Chen, J. A. Weibel, and S. V. Garimella, Ind. Eng. Chem. Res., 55, 3596 (2016).CrossRefGoogle Scholar
  53. (53).
    K. Halake and J. Lee, J. Ind. Eng. Chem., 54, 44 (2017).CrossRefGoogle Scholar
  54. (54).
    W. Zhao, T. Li, Y. Li, D.J. O'Brien, M. Terrones, B. Wei, J. Suhr, and X. Lucas Lu, J. Materiomics, 4, 157 (2018).CrossRefGoogle Scholar
  55. (55).
    Z. He, Y. Chen, J. Yang, C. Tang, J. Lv, Y. Liu, J. Mei, W.-M. Lau, and D. Hui, Compos. Part B: Eng., 129, 58 (2017).CrossRefGoogle Scholar
  56. (56).
    U. C. Paul, Paul, D. Fragouli, I. S. Bayer, and A. Athanassiou, Polymers, 8, 52 (2016).CrossRefGoogle Scholar
  57. (57).
    X. Yue, T. Zhang, D. Yang, F. Qiu, and J. Fang, J. Ind. Eng. Chem., 61, 188 (2018).CrossRefGoogle Scholar
  58. (58).
    W. Kim, D. Kim, S. Park, D. Lee, H. Hyun, and J. Kim, J. Ind. Eng. Chem., 61, 39 (2018).CrossRefGoogle Scholar
  59. (59).
    K. Halake, M. Birajdar, and J. Lee, J. Ind. Eng. Chem., 35, 1 (2016).CrossRefGoogle Scholar
  60. (60).
    S. Ahn, K. Halake, and J. Lee, Int. J. Biol. Macromol., 101, 776–782 (2017).CrossRefGoogle Scholar
  61. (61).
    X. Qiu, Z. Yang, H. Wu, J. Guo, Z. Zhang, J. Feng, G. Chai, and A. Liu, Appl. Surf. Sci., 456, 602 (2018).CrossRefGoogle Scholar
  62. (62).
    H. Jeong, S. Baek, S. Han, H. Jang, T. K. Rockson, and H. S. Lee, Macromol. Res., 26, 493 (2018).CrossRefGoogle Scholar
  63. (63).
    D. Kwon, D. M. Kim, S. M. Choi, H. S. Suh, Y. Y. Kim, H. Yoon, K. Char, Macromol. Res., 26, 374 (2018).CrossRefGoogle Scholar
  64. (64).
    X. Lin, M. Yin, Y. Liu, L. Li, X. Ren, Y. Sun, T.-S. Huang, J. Ind. Eng. Chem., 63, 303 (2018).CrossRefGoogle Scholar
  65. (65).
    L. Kong, Y. Li, F. Qiu, T. Zhang, Q. Guo, X. Zhang, D. Yang, J. Xu, M. Xue, J. Ind. Eng. Chem., 58, 369 (2018).CrossRefGoogle Scholar
  66. (66).
    A. Almasian, G. C. Fard, M. Mirjalili, and M. P. Gashti, J. Ind. Eng. Chem., 62, 146 (2018).CrossRefGoogle Scholar
  67. (67).
    Z. Wang, Y. Wang, and G. Liu, Angew. Chem., 128, 1313 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Kantappa Halake
    • 1
  • Soomin Bae
    • 1
  • Jiyoung Lee
    • 1
  • Yunho Cho
    • 1
  • Hongil Jo
    • 2
  • Jowoong Heo
    • 1
  • Kyungtae Park
    • 1
  • Hyeongju Kim
    • 1
  • Hyun Ju
    • 1
  • Yongkyun Kim
    • 1
  • Amirhosessein Hasani
    • 1
  • Thuy Duong Pham
    • 1
  • Jaeho Choi
    • 1
  • Sohyeon Hong
    • 1
  • Seongcheol Choi
    • 3
  • Jonghwi Lee
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulKorea
  2. 2.Department of ChemistryChung-Ang UniversitySeoulKorea
  3. 3.Department of Civil and Environmental EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations