Advertisement

Synthesis, Characterisation and Antimicrobial Evaluation of Chalcone Coupled Biscoumarin Copolyesters

  • Narendran KandaswamyEmail author
Article
  • 16 Downloads

Abstract

A series of three random copolyesters comprising biscoumarin and chalcone units as prime monomers, spaced with aliphatic alkyl chains of varying methylene units and 4,4′-oxydibenzoate, was synthesized and characterised by FTIR, NMR, TGA, DSC and XRD. The antimicrobial activity of the copolyesters was studied using Agar disc diffusion and broth dilution assay. The inhibitory effects of copolyesters were higher for Gram positive than Gram negative bacteria. All the copolyesters exhibited appreciable antimicrobial activity. In particular, copolyester 4c, poly(biscoumarin-4,4′-oxydibenzoate-3-methoxychalcone) exhibited highest inhibition zone range of 19±0.39 mm for Bacillus subtilis, 20±0.51mm for Staphylococcus aureus and 20±0.22 mm for Staphylococcus epidermidis. Bacillus subtilis was more sensitive towards copolyester 4c exhibiting a minimum inhibitory concentration of 39.05 μg/mL. Chalcone coupled biscoumarin copolyester presented good antimicrobial activities comparable with those of standard antimicrobial agents, Chloramphenicol and Amphotericin-B. Thus the incorporation of biscoumarin and chalcone units in the polymer chain exhibit very good antimicrobial activity against gram positive bacterial and fungal strains.

Keywords

biscoumarin copolyester chalcone amorphous antimicrobial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7082_MOESM1_ESM.pdf (483 kb)
Supplementary material, approximately 228 KB.

References

  1. (1).
    J. Hasan, R. J. Crawford, and E. P. Ivanova, Trends Biotechnol., 31, 295 (2013).CrossRefGoogle Scholar
  2. (2).
    S. B. Goodman, Z. Yao, M. Keeney, and F. Yang, Biomaterials., 34, 3174 (2013).CrossRefGoogle Scholar
  3. (3).
    L. Rimondini, M. Fini, and R. Giadino, J. Appl. Biomater. Biomechanics., 3, 1 (2005).Google Scholar
  4. (4).
    A. Muñoz-Bonilla and M. Fernandez-Garcia, Progress in Polym. Sci., 37, 281 (2012).CrossRefGoogle Scholar
  5. (5).
    K. Narendran and R. Nanthini, New J. Chem., 39, 4948 (2015).CrossRefGoogle Scholar
  6. (6).
    K. Narendran and R. Nanthini, Res. Chem. Intermed., 41, 7189 (2015).CrossRefGoogle Scholar
  7. (7).
    K. Narendran and R. Nanthini, ISRN., (2014).Google Scholar
  8. (8).
    P. Haribalan, K. Sankarapandian, K. Veerapan, N. Sathishkumar, K. Narendran, T. Lakshmi, and B. Sri Renukadevi, Phytomedicine, 46, 119 (2018).CrossRefGoogle Scholar
  9. (9).
    P. Haribalan, K. Sankarapandiana, K. Narendran, B. Sri Renukadevi, P. Dhaiveegan, and R. Nanthini, Int. J. Biochem. Cell. Bio., 92, 104 (2017).CrossRefGoogle Scholar
  10. (10).
    A. D. Gupta, S. Samanta, R. Mondal, and A. K. Mallik, Bull. Korean Chem. Soc., 33, 4239 (2012).CrossRefGoogle Scholar
  11. (11).
    G. Appendino, G. Cravotto, S. Tagliapietra, S. Ferraro, G. M. Nano, and G. Palmisano, Helv. Chim. Acta., 74, 1451 (1991).CrossRefGoogle Scholar
  12. (12).
    I. Manolov, C. M. Moessmer, and N. Danchev, Eur. J. Med. Chem., 41, 882 (2006).CrossRefGoogle Scholar
  13. (13).
    W. Jianzhang, W. Cong, C. Yuepiao, P. Jing, L. Donglou, Z. Yunjie, Y. Shulin, L. Xiaokun, W. Xiaoping, and L. Guang, Med. Chem. Res., 21, 444 (2012).CrossRefGoogle Scholar
  14. (14).
    T. V. Bubulac and C. Hamciuc, Polymer, 50, 2220 (2009).CrossRefGoogle Scholar
  15. (15).
    S. Arayne, N. Sultana, U. Haroon, and M. A. Mesaik, Bioinorganic Chem. Applications (2009).Google Scholar
  16. (16).
    M. C. Desai, M. C. 2013. Annual Reports in Medicinal Chemistry, Gilead Science, INC. (Foster city, CA, USA, 2013), p. 284.Google Scholar
  17. (17).
    J. J. Hlavka, J. H. Boothe, The Tetracyclines. (Springer-Verlag Berlin Heidelberg, New York, 1985), p. 283.CrossRefGoogle Scholar
  18. (18).
    S. N. Chatterjee, K. Chaudhuri, SpringerBriefs in Microbiology, (Springer-Verlag Berlin Heidelberg, New York, 2012), p. 65.Google Scholar
  19. (19).
    T. J. Silhavy, D. Kahne, and S. Walker, Cold Spring Harb Perspect Biol, (2010).Google Scholar
  20. (20).
    M. Hanan, A. Musarat, H. Shamshi, A. Touseef, J. Jin Wong, N. Ki-Taek, and K. H. Yong, Macromol. Res., 21, 589 (2013).CrossRefGoogle Scholar
  21. (21).
    H. Madhav, S. Paramjit, S. Neetika, and J. Gautam, Macromol. Res., 25, 689 (2017).CrossRefGoogle Scholar
  22. (22).
    P. Swaminathan, A. Sultan Nasar, and C. Sivakumar, Macromol. Res., 26, 831 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of ChemistrySaveetha Engineering CollegeThandalam, ChennaiIndia

Personalised recommendations