Advertisement

Built-in Water Capture in a Polythiophene Film Blended with Metal-Organic Frameworks

  • Young Jin Jang
  • Yoo Eil Jung
  • Eun Hye Kwon
  • Chang Yeon LeeEmail author
  • Yeong Don ParkEmail author
Article
  • 12 Downloads

Abstract

We introduced a metal-organic framework (MOF), HKUST-1, to a conjugated polymer layer, poly(3-hexylthiopene-2,5-diyl) (P3HT), and systematically investigated the effects of HKUST-1 in the P3HT active layer on the performances of fieldeffect transistor (FET) devices under humid conditions over 21 days. The performances of a P3HT film blended with HKUST-1 in an FET remained relatively stable under humid conditions over a long period of time. As the water molecules diffused into the bulk conjugated polymer layer, the HKUST-1 crystals in the P3HT film captured water molecules and prevented water adsorption by the P3HT backbones, suggesting an efficient approach to improving the environmental stability of polymer FETs. Furthermore, HKUST-1/P3HT blended films exposed to humidity displayed recovered device performances under vacuum. The device stability conveyed by the HKUST-1 in the presence of humidity was closely related to the superior ability of the HKUST-1 to capture water, which was based on the water adsorption characteristics of HKUST-1.

Keywords

polythiophene metal-organic frameworks HKUST-1 OFET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. Kumar, B. K. Kaushik, and Y. S. Negi, Polym. Rev., 54, 33 (2014).CrossRefGoogle Scholar
  2. (2).
    A. Rivaton, S. Chambon, M. Manceau, J.–L. Gardette, M. Firon, N. Lemaître, S. Guillerez, and S. Cros, Proc. SPIE, 7002, 70020I (2008).Google Scholar
  3. (3).
    M. Manceau, A. Rivaton, J.–L. Gardette, S. Guillerez, and N. Lemaître, Sol. Energy Mater. Sol. Cells, 95, 1315 (2011).CrossRefGoogle Scholar
  4. (4).
    P. Kumar, A. Sharma, S. Yadav, and S. Ghosh, Org. Electron., 14, 1663 (2013).CrossRefGoogle Scholar
  5. (5).
    S. Tiwari, W. Takashima, S. K. Balasubramanian, and S. Miyajima, Jpn. J. Appl. Phys., 53, 021601 (2014).CrossRefGoogle Scholar
  6. (6).
    H. S. Kim, J. Y. Na, S. Kim, and Y. D. Park, J. Phys. Chem. C, 119, 8838 (2015).CrossRefGoogle Scholar
  7. (7).
    C.–L. Fan, Y.–Z. Lin, P.–C. Chiu, S.–J. Wang, and W.–D. Lee, Org. Electron., 14, 2228 (2013).CrossRefGoogle Scholar
  8. (8).
    G. W. Hyung, J. Park, J. H. Kim, J. R. Koo, and Y. K. Kim, Solid State Electron., 54, 439 (2010).CrossRefGoogle Scholar
  9. (9).
    K. Ahn, J. B. Kim, H. Park, H. Kim, M. H. Lee, B. J. Kim, J. H. Cho, M. S. Kang, and D. R. Lee, Appl. Phys. Lett., 102, 043306 (2013).CrossRefGoogle Scholar
  10. (10).
    S.–H. Han and J. Jang, J. Soc. Inf. Disp., 14, 1097 (2006).CrossRefGoogle Scholar
  11. (11).
    J. Zhou, Y. Hao, X. Yu, N. Zhou, and H. Lin, J. Phys. D: Appl. Phys., 46, 385104 (2013).CrossRefGoogle Scholar
  12. (12).
    Y. D. Park, J. A. Lim, H. S. Lee, and K. Cho, Mater. Today, 10, 46 (2007).CrossRefGoogle Scholar
  13. (13).
    H. Wang, Y. Xu, X. Yu, R. Xing, J. Liu, and Y. Han, Polymers, 5, 1272 (2013).CrossRefGoogle Scholar
  14. (14).
    M. Chang, G. T. Lim, B. Park, and E. Reichmanis, Polymers, 9, 212 (2017).CrossRefGoogle Scholar
  15. (15).
    H. S. Kim, J. Mun, W. H. Lee, and Y. D. Park, Macromol. Res., 26, 139 (2018).CrossRefGoogle Scholar
  16. (16).
    B. Kang, W. H. Lee, H. H. Choi, Y. D. Park, and K. Cho, RSC Adv., 4, 45082 (2014).CrossRefGoogle Scholar
  17. (17).
    P. Silva, S. M. F. Vilela, J. P. C. Tomé, and F. A. A. Paz, Chem. Soc. Rev., 44, 6774 (2015).CrossRefGoogle Scholar
  18. (18).
    F. A. A. Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tomé, J. A. S. Cavaleiro, and J. Rocha, Chem. Soc. Rev., 41, 1088 (2012).CrossRefGoogle Scholar
  19. (19).
    P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, and S. Kaskel, Microporous Mesoporous Mater., 120, 325 (2009).CrossRefGoogle Scholar
  20. (20).
    G. Lu, O. K. Farha, L. E. Kreno, P. M. Schoenecker, K. S. Walton, R. P. V. Duyne, and J. T. Hupp, Adv. Mater., 23, 4449 (2011).CrossRefGoogle Scholar
  21. (21).
    Z. Liang, M. Marshall, and A. L. Chaffee, Energy Fuels, 23, 2785 (2009).CrossRefGoogle Scholar
  22. (22).
    C. Wei, X. Li, F. Xu, H. Tan, Z. Li, L. Sun, and Y. Song, Anal. Methods, 6, 1550 (2014).CrossRefGoogle Scholar
  23. (23).
    D. F. S. Gallis, M. V. Parkes, J. A. Greathouse, X. Zhang, and T. M. Nenoff, Chem. Mater., 27, 2018 (2015).CrossRefGoogle Scholar
  24. (24).
    W. Li, Y. Zhang, C. Zhang, Q. Meng, Z. Xu, P. Su, Q. Li, C. Shen, Z. Fan, L. Qin, and G. Zhang, Nat. Commun., 7, 11315 (2016).CrossRefGoogle Scholar
  25. (25).
    Y. D. Park, D. H. Kim, J. A. Lim, J. H. Cho, Y. Jang, W. H. Lee, J. H. Park, and K. Cho, J. Phys. Chem. C, 112, 1705 (2008).CrossRefGoogle Scholar
  26. (26).
    G. M. Paternò, V. Robbiano, K. J. Fraser, C. Frost, V. Garciá Sakai, and F. Cacialli, Sci. Rep., 7, 41013 (2017).CrossRefGoogle Scholar
  27. (27).
    D. H. Kim, M.–G. Jeong, H. O. Seo, and Y. D. Kim, Phys. Chem. Chem. Phys., 17, 599 (2015).CrossRefGoogle Scholar
  28. (28).
    H. O. Seo, M.–G. Jeong, K.–D. Kim, D. H. Kim, Y. D. Kim, and D. C. Lim, Surf. Interface Anal., 46, 544 (2014).CrossRefGoogle Scholar
  29. (29).
    H. Hintz, H.–J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé, Chem. Mater., 23, 145 (2011).CrossRefGoogle Scholar
  30. (30).
    J. M. Castillo, T. J. H. Vlugt, and S. Calero, J. Phys. Chem. C, 112, 15934 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Energy and Chemical EngineeringIncheon National UniversityIncheonKorea

Personalised recommendations