Interpenetrating Polymer Network Hydrogels of Gelatin and Poly(ethylene glycol) as An Engineered 3D Tumor Microenvironment

  • Dong Shin Lee
  • Jeon Il Kang
  • Byeong Hee HwangEmail author
  • Kyung Min ParkEmail author


An emerging trend in cancer research is to develop engineered tumor models using bio-inspired biomaterials that can mimic the native tumor microenvironment. Although various bio-inspired hydrogels have been utilized, it is still challenging to develop advanced polymeric hydrogel materials that can more accurately reconstruct critical aspects of the native tumor microenvironment. Herein, we present interpenetrating polymer network (IPN) hydrogels composed of thiolated gelatin and tyramine-conjugated poly(ethylene glycol), which form IPN hydrogels via horseradish peroxidase-mediated dual cross-linking reactions. We demonstrate that the IPN hydrogels exhibit independently controllable physicochemical properties. Also, the IPN hydrogels show resistance to the proteolytic enzymes and cytocompatibility for long-term culture of human fibrosarcoma (HT1080) cells. Moreover, we utilize the engineered tumor construct as a platform to evaluate the effect of matrix stiffness on cancer cell proliferation and drug resistance against the anticancer drug 5-fluorouracil as a model drug. In conclusion, we suggest that our IPN hydrogel is a promising material to study cancer biology and to screen innovative therapeutic agents for better clinical outcomes.


polymeric hydrogels injectable hydrogels engineered tumor models tumor microenvironments drug resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. S. Tessmer and K. T. Flaherty, Clin. Cancer Res., 23, 5325 (2017).CrossRefGoogle Scholar
  2. (2).
    N. E. Davidson, S. A. Armstrong, L. M. Coussens, M. R. Cruz–Correa, R. J. DeBerardinis, J. H. Doroshow, M. Foti, P. Hwu, T. W. Kensler, M. Morrow, C. G. Mulligan, W. Pao, E. A. Platz, T. J. Smith, and C. L. Willman, Clin. Cancer Res., 22 Suppl 19, S1 (2016).Google Scholar
  3. (3).
    M. Hay, D. W. Thomas, J. L. Craighead, C. Economides, and J. Rosenthal, Nat. Biotechnol., 32, 40 (2014).CrossRefGoogle Scholar
  4. (4).
    M. De Palma, D. Biziato, and T. V. Petrova, Nat. Rev. Cancer, 17, 457 (2017).CrossRefGoogle Scholar
  5. (5).
    D. F. Quail and J. A. Joyce, Nat. Med., 19, 1423 (2013).CrossRefGoogle Scholar
  6. (6).
    M. Kumar, S. K. Dhatwalia, and D. K. Dhawan, Tumour. Biol., 37, 14341 (2016).CrossRefGoogle Scholar
  7. (7).
    S. M. Weis and D. A. Cheresh, Nat. Med., 17, 1359 (2011).CrossRefGoogle Scholar
  8. (8).
    D. Ackerman and M. C. Simon, Trends Cell Biol., 24, 472 (2014).CrossRefGoogle Scholar
  9. (9).
    K. M. Park, D. Lewis, and S. Gerecht, Annu. Rev. Biomed. Eng., 19, 109 (2017).CrossRefGoogle Scholar
  10. (10).
    K. M. Park and S. Gerecht, Eur. Polym. J., 72, 507 (2015).CrossRefGoogle Scholar
  11. (11).
    S. Park and K. M. Park, Biomaterials, 182, 234 (2018).CrossRefGoogle Scholar
  12. (12).
    K. M. Park, K. S. Ko, Y. K. Joung, H. Shin, and K. D. Park, J. Mater. Chem., 21, 13180 (2011).CrossRefGoogle Scholar
  13. (13).
    K. M. Park, M. R. Blatchley, and S. Gerecht, Macromol. Rapid Commun., 35, 1968 (2014).CrossRefGoogle Scholar
  14. (14).
    K. M. Park and S. Gerecht, Nat. Commun., 5, 4075 (2014).CrossRefGoogle Scholar
  15. (15).
    K. M. Park, Y. Lee, J. Y. Son, D. H. Oh, J. S. Lee, and K. D. Park, Biomacromolecules, 13, 604 (2012).CrossRefGoogle Scholar
  16. (16).
    C. Li, C. Mu, W. Lin, and T. Ngai, ACS Appl. Mater. Interfaces, 7, 18732 (2015).CrossRefGoogle Scholar
  17. (17).
    S. Kalia, Polymeric Hydrogels as Smart Biomaterials, Springer, 2016.CrossRefGoogle Scholar
  18. (18).
    B. J. Klotz, D. Gawlitta, A. Rosenberg, J. Malda, and F. P. W. Melchels, Trends Biotechnol., 34, 394 (2016).CrossRefGoogle Scholar
  19. (19).
    S. Sokic and G. Papavasiliou, Tissue Eng. Part A, 18, 2477 (2012).CrossRefGoogle Scholar
  20. (20).
    G. P. Raeber, M. P. Lutolf, and J. A. Hubbell, Biophys. J., 89, 1374 (2005).CrossRefGoogle Scholar
  21. (21).
    A. M. Zaton and E. Ochoa de Aspuru, FEBS Lett., 374, 192 (1995).CrossRefGoogle Scholar
  22. (22).
    R. Safiri, R. H. Sajedi, and V. Jafarian, J. Mol. Liq., 123, 20 (2006).CrossRefGoogle Scholar
  23. (23).
    D. R. Edwards and G. Murphy, Nature, 394, 527 (1998).CrossRefGoogle Scholar
  24. (24).
    L. M. Coussens and Z. Werb, Nature, 420, 860 (2002).CrossRefGoogle Scholar
  25. (25).
    K. Kessenbrock, V. Plaks, and Z. Werb, Cell, 141, 52 (2010).CrossRefGoogle Scholar
  26. (26).
    S. D. Shapiro, Curr. Opin. Cell Biol., 10, 602 (1998).CrossRefGoogle Scholar
  27. (27).
    H. Sato, T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki, Nature, 370, 61 (1994).CrossRefGoogle Scholar
  28. (28).
    S. Kumar and V. M. Weaver, Cancer Metastasis Rev., 28, 113 (2009).CrossRefGoogle Scholar
  29. (29).
    D. Fukumura and R. K. Jain, J. Cell. Biochem., 101, 937 (2007).CrossRefGoogle Scholar
  30. (30).
    P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, BMC Med., 6, 11 (2008).CrossRefGoogle Scholar
  31. (31).
    E. A. Phelps, N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia, Adv. Mater., 24, 64 (2012).CrossRefGoogle Scholar
  32. (32).
    A. A. Starkov, A. Y. Andreyev, S. F. Zhang, N. N. Starkova, M. Korneeva, M. Syromyatnikov, and V. N. Popov, J. Bioenerg. Biomembr., 46, 471 (2014).CrossRefGoogle Scholar
  33. (33).
    L. Slade, J. Chalker, N. Kuksal, A. Young, D. Gardiner, and R. J. Mailloux, Biochim. Biophys. Acta Gen. Subj., 1861, 1960 (2017).CrossRefGoogle Scholar
  34. (34).
    M. Nikolaou, A. Pavlopoulou, A. G. Georgakilas, and E. Kyrodimos, Clin. Exp. Metastasis, 35, 309 (2018).CrossRefGoogle Scholar
  35. (35).
    J. Rueff and A. S. Rodrigues, Methods Mol. Biol., 1395, 1 (2016).CrossRefGoogle Scholar
  36. (36).
    G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, and S. Sarkar, Cancers (Basel), 6, 1769 (2014).CrossRefGoogle Scholar
  37. (37).
    P. Periti and E. Mini, J. Chemother., 1, 5 (1989).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Bioengineering, College of Life Sciences and BioengineeringIncheon National UniversityIncheonKorea
  2. 2.Department of Bioengineering and Nano-BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations