Macromolecular Research

, Volume 27, Issue 4, pp 427–434 | Cite as

Poly(3-hexylthiophene) Nanoparticles Prepared via a Film Shattering Process and Hybridization with TiO2 for Visible-Light Active Photocatalysis

  • Jeongwan Che
  • Naraechan Bae
  • Juran Noh
  • Taehyung Kim
  • Pil J. Yoo
  • Tae Joo Shin
  • Juhyun ParkEmail author


We present a methodology to prepare a hybrid photocatalyst based on conjugated polymer nanoparticles (CPNs) by electrostatically adsorbing TiO2 nanoparticles on the surfaces of the CPNs to achieve synergetic effects of efficient light-harvesting by CPNs and photocatalysis by TiO2 nanoparticles by taking advantages of the energy transfer from the CPNs to TiO2. Positive surface charges on CPNs were introduced by adding a portion of cationic amphiphile during the preparation of CPNs using poly(3-hexylthiophene) and a phospholipid via a phase-separated film shattering process. Then, anionic TiO2 nanoparticles were synthesized and adsorbed on the positively charged surfaces of CPNs by electrostatic attraction. The resulting hybrid nanoparticles showed efficient visible-light active photocatalysis which was confirmed by the degradation of methylene blue with visible-light irradiation.


conjugated polymers nanoparticles visible-light active photocatalysis dye degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Park, J. Ind. Eng. Chem., 51, 27 (2017).CrossRefGoogle Scholar
  2. (2).
    R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res., 52, 3581 (2013).CrossRefGoogle Scholar
  3. (3).
    X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater., 8, 76 (2009).CrossRefGoogle Scholar
  4. (4).
    C. H. Dai, S. D. Xu, W. Liu, X. Z. Gong, M. Panahandeh-Fard, Z. T. Liu, D. Q. Zhang, C. Xue, K. P. Loh, and B. Liu, Small, 14, 1801839 (2018).CrossRefGoogle Scholar
  5. (5).
    D. P. Ojha, H. P. Karki, and H. Kim, J. Ind. Eng. Chem., 61, 87 (2018).CrossRefGoogle Scholar
  6. (6).
    G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995).CrossRefGoogle Scholar
  7. (7).
    Y.-W. Su, W.-H. Lin, Y.-J. Hsu, and K.-H. Wei, Small, 10, 4427 (2014).CrossRefGoogle Scholar
  8. (8).
    L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett., 88, 093511 (2006).CrossRefGoogle Scholar
  9. (9).
    T. Xu and Q. Qiao, Energy Environ. Sci., 4, 2700 (2011).CrossRefGoogle Scholar
  10. (10).
    D. Wang, J. Zhang, Q. Luo, X. Li, Y. Duan, and J. An, J. Hazard. Mater., 169, 546 (2009).CrossRefGoogle Scholar
  11. (11).
    Y. Zhu and Y. Dan, Sol. Energy Mater. Sol. C, 94, 1658 (2010).CrossRefGoogle Scholar
  12. (12).
    J. Zhang, H. Yang, S. Xu, L. Yang, Y. Song, L. Jiang, and Y. Dan, Appl. Catal. B: Environ., 174–175, 193 (2015).Google Scholar
  13. (13).
    J. Yoon, J. Kwag, T. J. Shin, J. Park, Y. M. Lee, Y. Lee, J. Park, J. Heo, C. Joo, T. J. Park, P. J. Yoo, S. Kim, and J. Park, Adv. Mater., 26, 4559 (2014).CrossRefGoogle Scholar
  14. (14).
    Y. K. Choi, D. Lee, S. Y. Lee, T. J. Shin, J. Park, and D. J. Ahn, Macromolecules, 50, 6935 (2017).CrossRefGoogle Scholar
  15. (15).
    K. C. Krogman, N. S. Zacharia, D. M. Grillo, and P. T. Hammond, Chem. Mater., 20, 1924 (2008).CrossRefGoogle Scholar
  16. (16).
    Y.-J. Kim, H.-T. Jung, C. W. Ahn, and H.-J. Jeon, Adv. Mater. Interfaces, 4, 1700342 (2017).CrossRefGoogle Scholar
  17. (17).
    N. Bae, H. Park, P. J. Yoo, T. J. Shin, and J. Park, J. Ind. Eng. Chem., 51, 172 (2017).CrossRefGoogle Scholar
  18. (18).
    D. Lee, T. J. Shin, P. J. Yoo, K. W. Oh, and J. Park, J. Ind. Eng. Chem., 63, 33 (2018).CrossRefGoogle Scholar
  19. (19).
    J. Noh, S. Jung, D. G. Koo, G. Kim, K. S. Choi, J. Park, T. J. Shin, C. Yang, and J. Park, Sci. Rep., 8, 14448 (2018).CrossRefGoogle Scholar
  20. (20).
    L. Zang, Y. Che, and J. S. Moore, Acc. Chem. Res., 41, 1596 (2008).CrossRefGoogle Scholar
  21. (21).
    E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, and Z. Bao, Adv. Funct. Mater., 20, 3519 (2010).CrossRefGoogle Scholar
  22. (22).
    S. D. D. V. Rughooputh, S. Hotta, A. J. Heeger, and F. Wudl, J. Polym. Sci. Polym. Phys., 25, 1071 (1987).CrossRefGoogle Scholar
  23. (23).
    Y. Li, Y. Chen, X. Liu, Z. Wang, X. Yang, Y. Tu, and X. Zhu, Macromolecules, 44, 6370 (2011).CrossRefGoogle Scholar
  24. (24).
    J. Peet, E. Brocker, Y. H. Xu, and G. C. Bazan, Adv. Mater., 20, 1882 (2008).CrossRefGoogle Scholar
  25. (25).
    Y. Lee, I. Yang, J. E. Lee, S. Hwang, J. W. Lee, S.-S. Um, T. L. Nguyen, P. J. Yoo, H. Y. Woo, J. Park, and S. K. Kim, J. Phys. Chem. C, 117, 3298 (2013).CrossRefGoogle Scholar
  26. (26).
    L. E. Garner, J. Park, S. M. Dyar, A. Chworos, J. J. Sumner, and G. C. Bazan, J. Am. Chem. Soc., 132, 10042 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Jeongwan Che
    • 1
  • Naraechan Bae
    • 1
  • Juran Noh
    • 1
  • Taehyung Kim
    • 1
  • Pil J. Yoo
    • 2
  • Tae Joo Shin
    • 3
  • Juhyun Park
    • 1
    Email author
  1. 1.School of Chemical Engineering and Materials Science, Institute of Energy Converting Soft MaterialsChung-Ang UniversitySeoulKorea
  2. 2.School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonKorea
  3. 3.UNIST Central Research Facilities & School of Natural ScienceUlsan National Institute of Science and Technology (UNIST)UlsanKorea

Personalised recommendations