Synthesis and Characterization of DPP-Based Conjugated Polymers via Dehydrogenative Direct Alkenylation Polycondensation

  • Jiwon Lee
  • Hea Jung Park
  • Jung Min Joo
  • Do-Hoon HwangEmail author


Two π-conjugated polymers were successfully synthesized by polycondensation via dehydrogenative direct alkenylation with Pd(II) catalyst (Pd(OAc)2) without directing groups in an atom- and step-economical and eco-friendly manner. Using the Pd(OAc)2/pyridine catalytic system, C-H activation of the C-5 position on the thiophene moiety of 3,6-di(thiophen-2′-yl)diketopyrrolopyrrole derivative was regioselective and the cross-coupled products were readily formed with trans-configuration. The optical, electrochemical, and thermal properties of the synthesized polymers were studied to investigate their potential applicability to semiconducting materials.


diketopyrrolopyrrole direct alkenylation palladium dehydrogenation polycondensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7070_MOESM1_ESM.pdf (176 kb)
Macromolecular Research


  1. (1).
    T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, CRC Press, Boca Raton, 2007.Google Scholar
  2. (2).
    M. H. Harun, E. Saion, A. Kassim, N. Yahya, and E. Mahmud, UCSI Academic J., 2, 63 (2007).Google Scholar
  3. (3).
    J. K. Stille, Angew. Chem. Int. Ed. Engl., 25, 508 (1986).CrossRefGoogle Scholar
  4. (4).
    N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995).CrossRefGoogle Scholar
  5. (5).
    A. D. Schlüter, J. Polym. Sci. A: Polym. Chem., 39, 1533 (2001).CrossRefGoogle Scholar
  6. (6).
    S. M. McAfee, S. V. Dayneko, A. D. Hendsbee, P. Josse, P. Blanchard, C. Cabanetos, and G. C. Welch, J. Mater. Chem. A, 5, 11623 (2017).CrossRefGoogle Scholar
  7. (7).
    H. S. Kim, E. Song, S. B. Lee, I.-N. Kang, K. Cho, and D.-H. Hwang, Org. Electron., 56, 129 (2018).CrossRefGoogle Scholar
  8. (8).
    W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, and T. Kanbara, Macromolecules, 45, 4128 (2012).CrossRefGoogle Scholar
  9. (9).
    A. Facchetti, L. Vaccaro, and A. Marrocchi, Angew. Chem. Int. Ed., 51, 3520 (2012).CrossRefGoogle Scholar
  10. (10).
    L. G. Mercier and M. Leclerc, Acc. Chem. Res., 46, 1597 (2013).CrossRefGoogle Scholar
  11. (11).
    S. Kowalski, S. Allard, K. Zilberberg, T. Riedl, and U. Scherf, Prog. Polym. Sci., 38, 1805 (2013).CrossRefGoogle Scholar
  12. (12).
    Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, Adv. Mater., 27, 6753 (2015).CrossRefGoogle Scholar
  13. (13).
    S. J. Han, H. T. Kim, and J. M. Joo, J. Org. Chem., 81, 689 (2016).CrossRefGoogle Scholar
  14. (14).
    T. Iitsuka, P. Schaal, K. Hirano, T. Satoh, C. Bolm, and M. Miura, J. Org. Chem., 78, 7216 (2013).CrossRefGoogle Scholar
  15. (15).
    T. Morita, T. Satoh, and M. Miura, Org. Lett., 17, 4384 (2015).CrossRefGoogle Scholar
  16. (16).
    H. Saito, J. Kuwabara, T. Yasuda, and T. Kanbara, Polym. Chem., 7, 2775 (2016).CrossRefGoogle Scholar
  17. (17).
    H. Saito, J. Kuwabara, T. Yasuda, and T. Kanbara, Macromol. Rapid Commun., 38, 1800414 (2018).CrossRefGoogle Scholar
  18. (18).
    N. Umeda, K. Hirano, T. Satoh, and M. Miura, J. Org. Chem., 74, 7094 (2009).CrossRefGoogle Scholar
  19. (19).
    X. Xue, J. Xu, L. Zhang, C. Xu, Y. Pan, L. Xu, H. Li, and W. Zhang, Adv. Synth. Catal., 358, 573 (2016).CrossRefGoogle Scholar
  20. (20).
    B. Gong, J. Shi, X. Wang, Y. Yan, Q. Li, Y. Meng, H. E. Xu, and W. Yi, Adv. Synth. Catal., 356, 137 (2014).CrossRefGoogle Scholar
  21. (21).
    Y. Unoh, K. Hirano, T. Satoh, and M. Miura, Org. Lett., 17, 704 (2015).CrossRefGoogle Scholar
  22. (22).
    S. H. Cho, S. J. Hwang, and S. Chang, J. Am. Chem. Soc., 130, 9254 (2008).CrossRefGoogle Scholar
  23. (23).
    J. Zhao, L. Huang, K. Cheng, and Y. Zhang, Tetrahedron Lett., 50, 2758 (2009).CrossRefGoogle Scholar
  24. (24).
    S. Chen, X. Chang, Y. Tao, H. Chen, and Y. Xia, Org. Biomol. Chem., 13, 10675 (2015).CrossRefGoogle Scholar
  25. (25).
    H. Wang, F. Liu, L. Bu, J. Gao, C. Wang, W. Wei, and T. P. Russell, Adv. Mater., 25, 6519 (2013).CrossRefGoogle Scholar
  26. (26).
    Y. Li, P. Sonar, L. Murphy, and W. Hong, Energy Environ. Sci., 6, 1684 (2013).CrossRefGoogle Scholar
  27. (27).
    M. H. Emmert, A. K. Cook, Y. J. Xie, and M. S. Sanford, Angew. Chem. Int. Ed., 50, 9409 (2011).CrossRefGoogle Scholar
  28. (28).
    V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed., 41, 2596 (2002).CrossRefGoogle Scholar
  29. (29).
    K. M. Engle and J.-Q. Yu, J. Org. Chem., 78, 8927 (2013).CrossRefGoogle Scholar
  30. (30).
    K. Shen, Y. Fu, J.-N. Li, L. Liu, and Q.-X. Guo, Tetrahedron, 63, 1568 (2007).CrossRefGoogle Scholar
  31. (31).
    J.-F. Jheng, Y.-Y. Lai, J.-S. Wu, Y.-H. Chao, C.-L. Wang, and C.-S. Hsu, Adv. Mater., 25, 2445 (2013).CrossRefGoogle Scholar
  32. (32).
    T. Lei, J.-H. Dou, and J. Pei, Adv. Mater., 24, 6457 (2012).CrossRefGoogle Scholar
  33. (33).
    Z. Chen, P. Cai, J. Chen, X. Liu, L. Zhang, L. Lan, J. Peng, Y. Ma, and Y. Cao, Adv. Mater., 26, 2586 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Jiwon Lee
    • 1
  • Hea Jung Park
    • 1
  • Jung Min Joo
    • 1
  • Do-Hoon Hwang
    • 1
    Email author
  1. 1.Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityBusanKorea

Personalised recommendations