Advertisement

Binder Effect on Fuel Cell Performance and Interfacial Stability of Membrane Electrode Assembly Fabricated with Sulfonated Poly(ether ether ketone) Membrane

  • Jongwook Lee
  • Yeonho Ahn
  • Dukjoon KimEmail author
Article
  • 11 Downloads

Abstract

The binder effect was investigated on the interfacial stability and the cell performance of membrane electrode assembly (MEA), when Nafion® and sulfonated poly(ether ether ketone) (sPEEK) ionomers were used as binders. When sPEEK membrane was employed in the MEA fabrication, sPEEK ionomer illustrated better cell performance with lower electric-surface resistance than Nafion® ionomer under the 30% relative humidity (RH), whereas the outcome is vice versa at 100% RH. This different result was caused by the interfacial stability between the catalyst and membrane via binder as well as the proton conductivity of binder. Even though the proton conductivity of Nafion® ionomer was higher than that of sPEEK, the compatibility between sPEEK membrane and sPEEK ionomer was better than that between sPEEK membrane and Nafion® ionomer. At 30% RH, this interfacial stability, rather than proton conductivity of the ionomer, has more significant effect on the cell performance, as the SEM-morphology analysis showed that application of the Nafion® ionomer resulted in the delamination of the membrane from the catalyst layer. At the 100% RH, the proton conductivity of the binder was the main contribution to the cell performance, as an interfacial problem was not evident between the two layers.

Keywords

binder cell performance fuel cell poly(ether ether ketone) sulfonation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. Chu and R. Jiang, J. Power Sources, 80, 226 (1999).CrossRefGoogle Scholar
  2. (2).
    T. Omata, M. Uchida, H. Uchida, M. Watanabe, and K. Miyatake, Phys. Chem. Chem. Phys., 14, 16713 (2012).CrossRefGoogle Scholar
  3. (3).
    H.-Y. Jung, K.-Y. Cho, K. Sung, W.-K. Kim, M. Kurkuri, and J.-K. Park, Electrochim. Acta, 52, 4916 (2007).CrossRefGoogle Scholar
  4. (4).
    K. Kang and D. Kim, J. Power Sources, 281, 146 (2015).CrossRefGoogle Scholar
  5. (5).
    K. Kang, B. Kwon, S. W. Choi, J. Lee, and D. Kim, Int. J. Hydrogen Energy, 40, 16443 (2015).CrossRefGoogle Scholar
  6. (6).
    J.-E. Kim and D. Kim, J. Membr. Sci., 405, 176 (2012).CrossRefGoogle Scholar
  7. (7).
    Y. Kwon, S. Y. Lee, S. Hong, J. H. Jang, D. Henkensmeier, S. J. Yoo, H.-J. Kim, and S.-H. Kim, Polym. Chem., 6, 233 (2015).CrossRefGoogle Scholar
  8. (8).
    M. D. T. Nguyen and D. Kim, Solid State Ion., 270, 66 (2015).CrossRefGoogle Scholar
  9. (9).
    M. D. T. Nguyen, S. Yang, and D. Kim, J. Power Sources, 328, 355 (2016).CrossRefGoogle Scholar
  10. (10).
    J. Pang, S. Feng, H. Zhang, Z. Jiang, and G. Wang, RSC Adv., 5, 38298 (2015).CrossRefGoogle Scholar
  11. (11).
    K. B. Wiles, C. M. de Diego, J. de Abajo, and J. E. McGrath, J. Membr. Sci., 294, 22 (2007).CrossRefGoogle Scholar
  12. (12).
    K.-Y. Cho, H.-Y Jung, N.-S. Choi, S.-J. Sung, J.-K. Park, J.-H. Choi, and Y.-E. Sung, Solid State Ion., 176, 3027 (2005).CrossRefGoogle Scholar
  13. (13).
    W. L. Harrison, M. A. Hickner, Y. S. Kim, and J. E. McGrath, Fuel Cells, 5, 201 (2005).CrossRefGoogle Scholar
  14. (14).
    S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, and M. Guiver, Catal. Today, 82, 213 (2003).CrossRefGoogle Scholar
  15. (15).
    J.-C. Lin, M. Ouyang, J. M. Fenton, H. R. Kunz, J. T. Koberstein, and M. B. Cutlip, J. Appl. Polym. Sci., 70, 121 (1998).CrossRefGoogle Scholar
  16. (16).
    S. Sambandam and V. Ramani, Phys. Chem. Chem. Phys., 12, 6140 (2010).CrossRefGoogle Scholar
  17. (17).
    K. N. T. Do and D. Kim, J. Appl. Polym. Sci., 110, 1763 (2008).CrossRefGoogle Scholar
  18. (18).
    J. Park and D. Kim, Int. J. Hydrogen Energy, 39, 1063 (2014).CrossRefGoogle Scholar
  19. (19).
    J. E. Chae, B. H. Kim, J. H. Noh, J. Jung, J.-Y. Kim, J. H. Jang, S. J. Yoo, H.-J. Kim, and S. Y. Lee., J. Ind. Eng. Chem., 47, 315 (2017).CrossRefGoogle Scholar
  20. (20).
    L. Xie, E.-B. Cho, and D. Kim, Solid State Ion., 203, 1 (2011).CrossRefGoogle Scholar
  21. (21).
    Y. J. Yoon, T.-H. Kim, D. M. Yu, J.-Y. Park, and Y. T. Hong, Int. J. Hydrogen Energy, 37, 13452 (2012).CrossRefGoogle Scholar
  22. (22).
    M.-R. Lee, H.-Y. Lee, S.-D. Yim, C.-S. Kim, Y.-G. Shul, A. Kucernak, and D. Shin, Fuel Cells, 18, 129 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations