Fabrication of Aminosilanized Halloysite Based Floating Biopolymer Composites for Sustained Gastro Retentive Release of Curcumin

  • N. Siva Gangi Reddy
  • K. Madhusudana Rao
  • Soo Yong Park
  • Taeyoon Kim
  • Ildoo ChungEmail author


Being poor solubility and degradation at relatively higher pH present in the small intestine, it is very essential to develop gastro-retentive dosages for the release of curcumin. In this paper, the halloysite nanotubes (HNTs) was modified with aminopropyl trimethoxy silane (APTES) in order to increase the buoyancy of the hybrid beads through holding CO2 molecules within the pores of the beads, followed by the encapsulation of curcumin into the lumen of the HNTs. Highly porous pectin based hybrid beads were fabricated by incorporating various compositions of curcumin loaded amino silanized halloysite nanotube (MHNT) and sodium bicarbonate as CO2 generating agent. Finally, hybrid beads were crosslinked by ionotropic gelation method using calcium chloride and used to gastro retentive delivery of curcumin in sustained manner. The amino salinization of halloysite and curcumin loading into the modified halloysite were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The highly porous nature of cross-linked hybrid beads has been confirmed with scanning electron microscopy (SEM) studies. In vitro release studies in simulated gastric fluid indicate that these new hybrid floating carriers are suitable for gastro retentive controlled release applications.


curcumin halloysite pectin gastro retentive delivery in vitro release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. R. S. Reddy, K. M. Rao, K. S. V. Rao, Y. Shchipunov, and C.–S. Ha, Macromol. Res., 22, 832 (2014).CrossRefGoogle Scholar
  2. (2).
    H.–J. Hong, J. Kim, Y. J. Suh, D. Kim, K.–M. Roh, and I. Kang, Macromol. Res., 25, 1145 (2017).CrossRefGoogle Scholar
  3. (3).
    C. Bothiraja, V. Kumbhar, A. Pawar, K. Shaikh, and R. Kamble, RSC Adv., 5, 28848 (2015).CrossRefGoogle Scholar
  4. (4).
    E. Deshommes, R. Tardif, M. Edwards, and S. Sauve, Chem. Cent. J., 6, 138 (2012).CrossRefGoogle Scholar
  5. (5).
    G. V. Joshi, B. D. Kevadiya, H. M. Mody, and H. C. Bajaj, J. Polym. Sci., Part A: Polym. Chem., 50, 423 (2012).CrossRefGoogle Scholar
  6. (6).
    L. Shen, C.–C. Liu, C.–Y. An, and H.–F. Ji, Sci. Rep., 6, 20872 (2016).CrossRefGoogle Scholar
  7. (7).
    M. Mahkam, N. Poorgholy, and L. Vakhshouri, Macromol. Res., 17, 709 (2009).CrossRefGoogle Scholar
  8. (8).
    J. Ravindran, S. Prasad, and B. B. Aggarwal, AAPS J., 11, 495 (2009).CrossRefGoogle Scholar
  9. (9).
    M. Bazzano, R. Pisano, J. Brelstaff, M. G. Spillantini, M. Sidryk–Wegrzynowicz, G. Rizza, and M. Sangermano, J. Polym. Sci., Part A: Polym. Chem., 54, 3357 (2016).CrossRefGoogle Scholar
  10. (10).
    E. Abdullayev and Y. Lvov, J. Mater. Chem. B, 1, 2894 (2013).CrossRefGoogle Scholar
  11. (11).
    M. Liu, Y. Zhang, C. Wu, S. Xiong, and C. Zhou, Int. J. Biol. Macromol., 51, 566 (2012).CrossRefGoogle Scholar
  12. (12).
    S. Jana, S. Das, C. Ghosh, A. Maity, and M. Pradhan, Sci. Rep., 5, 8711 (2015).CrossRefGoogle Scholar
  13. (13).
    M. Liu, Y. Chang, J. Yang, Y. You, R. He, T. Chen, and C. Zhou, J. Mater. Chem. B, 4, 2253 (2016).CrossRefGoogle Scholar
  14. (14).
    M. Massaro, S. Riela, P. L. Meo, R. Noto, G. Cavallaro, S. Milioto, and G. Lazzara, J. Mater. Chem. B, 2, 7732 (2014).CrossRefGoogle Scholar
  15. (15).
    G. Cavallaro, G. Lazzara, M. Massaro, S. Milioto, R. Noto, F. Parisi, and S. Riela, J. Phys. Chem. C, 119, 8944 (2015).CrossRefGoogle Scholar
  16. (16).
    K. M. Rao, S. Nagappan, D. J. Seo, and C.–S. Ha, Appl. Clay Sci., 97, 33 (2014).CrossRefGoogle Scholar
  17. (17).
    L. Liu, M. L. Fishman, and K. B. Hicks, Cellulose, 14, 15 (2007).CrossRefGoogle Scholar
  18. (18).
    Y. M. Lvov, D. G. Shchukin, H. Möhwald, and R. R. Price, ACS Nano, 2, 814 (2008).CrossRefGoogle Scholar
  19. (19).
    I. Braccini and S. Pérez, Biomacromolecules, 2, 1089 (2001).CrossRefGoogle Scholar
  20. (20).
    H. Power, M. Karde, N. Mundle, P. Jadav, and K. Mehra, Med. Chem., 4, 588 (2014).Google Scholar
  21. (21).
    E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, and Y. Lvov, ACS Nano, 6, 7216 (2012).CrossRefGoogle Scholar
  22. (22).
    K. Tazaki, Clays Clay Miner., 53, 224 (2005).CrossRefGoogle Scholar
  23. (23).
    W. O. Yah, A. Takahara, and Y. M. Lvov, J. Am. Chem. Soc., 134, 1853 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • N. Siva Gangi Reddy
    • 1
  • K. Madhusudana Rao
    • 1
  • Soo Yong Park
    • 1
  • Taeyoon Kim
    • 1
  • Ildoo Chung
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringPusan National UniversityBusanKorea

Personalised recommendations