Self-Healing and Rheological Properties of Polyhydroxyurethane Elastomers Based on Glycerol Carbonate Capped Prepolymers

  • Sang Hyub Lee
  • Dai Soo LeeEmail author


Polyhydroxyurethane were prepared from polyurethane prepolymers by end capping with glycerol carbonate (GC) and chain extension with an amine. The GC-based polyurethane (GPU) shows excellent mechanical properties together with superior self-healing properties compared with conventional polyurethane (CPU). The significant improvement in mechanical properties was driven by enhanced hydrogen bonding and the excellent self-healing was attributed to the exchange reaction of the β-hydroxy unit of GPU. The self-healing efficiencies of GPU and CPU were approximately 92% and 42% at 110 °C, respectively. The characteristics of GPU were also studied by rheological measurements. GPU showed not only a negative normal stress difference (N1) but also a crossover of storage (G′) and loss (G″) moduli. It is postulated that the exchange reactions of GPU in melts induce a negative N1 as well as self-healing of the GPU, implying desirable melt processing stability with minimal die swell.


polyhydroxyurethane cyclic carbonate self-healing negative normal stress difference die swell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7060_MOESM1_ESM.pdf (2 mb)
Supporting Information


  1. (1).
    A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, and I. Mondragon, Polym. Eng. Sci., 48, 297 (2008).CrossRefGoogle Scholar
  2. (2).
    J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, RSC Adv., 6, 114453 (2016).Google Scholar
  3. (3).
    H.–D Kim, T.–J. Lee, J.–H. Huh, and D.–J. Lee, J. Appl. Polym. Sci., 37, 345 (1999).Google Scholar
  4. (4).
    L. S. T. J. Korley, B. D. Pate, E. L. Thomas, and P. T. Hammond, Polymer (Guildf)., 47, 3073 (2006).CrossRefGoogle Scholar
  5. (5).
    L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang, Y. Huang, Y. Ma, and Y. Chen, Adv. Mater., 25, 2224 (2013).CrossRefGoogle Scholar
  6. (6).
    X. An, R.H. Aguirresarobe, L. Irusta, F. Ruipérez, J.M. Matxain, X. Pan, N. Aramburu, D. Mecerreyes, H. Sardon, and J. Zhu, Polym. Chem., 8, 3641 (2017).CrossRefGoogle Scholar
  7. (7).
    B. Ghosh and M. W. Urban, Science, 323, 1458 (2009).CrossRefGoogle Scholar
  8. (8).
    Y. Jinglei, M. W. Keller, J. S. Moore, S. R. White, and N. R. Sottos, Macromolecules, 41, 9650 (2008).CrossRefGoogle Scholar
  9. (9).
    S. J. Garcia, Eur. Polym. J., 53, 118 (2014).CrossRefGoogle Scholar
  10. (10).
    M. W. Urban, Angew. Chem. Int. Ed., 53, 3775 (2014).CrossRefGoogle Scholar
  11. (11).
    X. Jian, Y. Hu, W. Zhou, and L. Xiao, Polym. Adv. Technol., 29, 463 (2018).CrossRefGoogle Scholar
  12. (12).
    C. C. Liu, A. Y. Zhang, L. Ye, and Z. G. Feng, Chinese J. Polym. Sci., 31, 251 (2013).CrossRefGoogle Scholar
  13. (13).
    Y. Lin and G. Li, J. Mater. Chem. B, 2, 6878 (2014).CrossRefGoogle Scholar
  14. (14).
    M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, and C. Weder, Nature, 472, 334 (2011).CrossRefGoogle Scholar
  15. (15).
    S. Bode, L. Zedler, F. H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M. D. Hager, and U. S. Schubert, Adv. Mater., 25, 1634 (2013).CrossRefGoogle Scholar
  16. (16).
    S. Bode, R. K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F. H. Schacher, R. M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S. J. Garcia, S. Spange, S. van der Zwaag, M. D. Hager, and U. S. Schubert, Polym. Chem., 4, 4966 (2013).CrossRefGoogle Scholar
  17. (17).
    S. Burattini, H. M. Colquhoun, B. W. Greenland, and W. Hayes, Faraday Discuss, 143, 251 (2009).CrossRefGoogle Scholar
  18. (18).
    S. Burattini, B. W. Greenland, W. Hayes, M. E. MacKay, S. J. Rowan, and H. M. Colquhoun, Chem. Mater., 23, 6 (2011).CrossRefGoogle Scholar
  19. (19).
    Y. Chujo, K. Sada, A. Naka, R. Nomura, and T. Saegusa, Macromolecules, 26, 883 (1993).CrossRefGoogle Scholar
  20. (20).
    A. Takahashi, R. Goseki, K. Ito, and H. Otsuka, ACS. Macro. Lett., 6, 1280 (2017).CrossRefGoogle Scholar
  21. (21).
    W. J. Choi, J.–S. Chung, J.–J. Kim, S.–K. Kim, S.–H. Cha, M. Park, and J.–C. Lee, J. Coat. Technol. Res., 11, 455 (2014).CrossRefGoogle Scholar
  22. (22).
    Y. L. Liu and T. W. Chuo, Polym. Chem., 4, 2194 (2013).CrossRefGoogle Scholar
  23. (23).
    P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, and Y. Zhang, RSC Adv., 3, 15475 (2013).Google Scholar
  24. (24).
    P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, and Y. Zhang, J. Appl. Polym. Sci., 131, 1 (2014).Google Scholar
  25. (25).
    K. K. Oehlenschlaeger, J. O. Mueller, J. Brandt, S. Hilf, A. Lederer, M. Wilhelm, R. Graf, M. L. Coote, F. G. Schmidt, and C. Barner–Kowollik, Adv. Mater., 26, 3561 (2014).CrossRefGoogle Scholar
  26. (26).
    Y. Heo and H. A. Sodano, Adv. Funct. Mater., 24, 5261 (2014).CrossRefGoogle Scholar
  27. (27).
    J. Li, G. Zhang, L. Deng, K. Jiang, S. Zhao, Y. Gao, R. Sun, and C. Wong, J. Appl. Polym. Sci., 132, 1 (2015).Google Scholar
  28. (28).
    M. Q. Zhang and M. Z. Rong, Polym. Chem., 4, 4878 (2013).CrossRefGoogle Scholar
  29. (29).
    Y. Yang, X. Lu, and W. Wang, Mater. Des., 127, 30 (2017).CrossRefGoogle Scholar
  30. (30).
    D. G. Bekas, K. Tsirka, D. Baltzis, and A. S. Paipetis, Compos. Part B: Eng., 87, 92 (2016).CrossRefGoogle Scholar
  31. (31).
    D. J. Fortman, J. P. Brutman, C. J. Cramer, M. A. Hillmyer, and W. R. Dichtel, J. Am. Chem. Soc., 137, 14019 (2015).CrossRefGoogle Scholar
  32. (32).
    P. Yan, W. Zhao, X. Fu, Z. Liu, W. Kong, C. Zhou, and J. Lei, RSC Adv., 7, 26858 (2017).Google Scholar
  33. (33).
    X. Chen, L. Li, K. Jin, and J. M. Torkelson, Polym. Chem., 8, 6349 (2017).CrossRefGoogle Scholar
  34. (34).
    D. J. Fortman, J. P. Brutman, M. A. Hillmyer, and W. R. Dichtel, J. Appl. Polym. Sci., 134, 1 (2017).Google Scholar
  35. (35).
    L. Imbernon, S. Norvez, and L. Leibler, Macromolecules, 49, 2172 (2016).CrossRefGoogle Scholar
  36. (36).
    D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, Science, 334, 965 (2011).CrossRefGoogle Scholar
  37. (37).
    M. Capelot, D. Montarnal, F. Tournilhac, and L. Leibler, J. Am. Chem. Soc., 134, 7664 (2012).CrossRefGoogle Scholar
  38. (38).
    M. Capelot, M.M. Unterlass, F. Tournilhac, and L. Leibler, ACS Macro Lett., 1, 789 (2012).CrossRefGoogle Scholar
  39. (39).
    H. Tomita, F. Sanda, and T. Endo, J. Polym. Sci. Part A Pol. Chem., 39, 3678 (2001).CrossRefGoogle Scholar
  40. (40).
    T. Bürgel and M. Fedtke, Polym. Bull., 30, 61 (1993).CrossRefGoogle Scholar
  41. (41).
    F. Camara, S. Benyahya, V. Besse, G. Boutevin, R. Auvergne, B. Boutevin, and S. Caillol, Eur. Polym. J., 55, 17 (2014).CrossRefGoogle Scholar
  42. (42).
    C. Carré, L. Bonnet, and L. Avérous, RSC Adv., 4, 54018 (2014).Google Scholar
  43. (43).
    C. Carré, H. Zoccheddu, S. Delalande, P. Pichon, and L. Avérous, Eur. Polym. J., 84, 759 (2016).CrossRefGoogle Scholar
  44. (44).
    G. Beniah, B. E. Uno, T. Lan, J. Jeon, W. H. Heath, K. A. Scheidt, and J. M. Torkelson, Polymer (United Kingdom), 110, 218 (2017).Google Scholar
  45. (45).
    S. Guillaume, M. Helou, J.–F. Carpentier, and M. Slawinski, Total Petrochemicals Research Feluy, Centre National De La Recherche Scientifique (Cnrs), W.O. Patent 2012007254 (2011).Google Scholar
  46. (46).
    B. Nohra, L. Candy, J. F. Blanco, C. Guerin, Y. Raoul, and Z. Mouloungui, Macromolecules, 46, 3771 (2013).CrossRefGoogle Scholar
  47. (47).
    E. K. Leitsch, G. Beniah, K. Liu, T. Lan, W. H. Heath, K. A. Scheidt, and J. M. Torkelson, ACS Macro Lett., 5, 424 (2016).CrossRefGoogle Scholar
  48. (48).
    G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Polym. Adv. Technol., 26, 707 (2015).CrossRefGoogle Scholar
  49. (49).
    L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev., 115, 12407 (2015).CrossRefGoogle Scholar
  50. (50).
    H. Ishihara, I. Kimura, K. Saito, and H. Ono, J. Macromol. Sci. Part B, 10, 591 (1974).CrossRefGoogle Scholar
  51. (51).
    Y. I. Tien and K. H. Wei, Polymer (Guildf), 42, 3213 (2001).CrossRefGoogle Scholar
  52. (52).
    D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, Polymer (Guildf), 47, 3814 (2006).CrossRefGoogle Scholar
  53. (53).
    B. Pukánszky, K. Bagdi, K. Molnár, and B. Pukannszky, J. Therm. Anal. Calorim., 98, 825 (2009).CrossRefGoogle Scholar
  54. (54).
    S. Oprea, Polym. Bull., 65, 753 (2010).CrossRefGoogle Scholar
  55. (55).
    S. Nozaki, T. Hirai, Y. Higaki, K. Yoshinaga, K. Kojio, and A. Takahara, Polymer (United Kingdom), 116, 423 (2017).Google Scholar
  56. (56).
    L. Feng, Z. Yu, Y. Bian, J. Lu, X. Shi, and C. Chai, Polymer (United Kingdom), 124, 48 (2017).Google Scholar
  57. (57).
    H. Xia, M. Song, Z. Zhang, and M. Richardson, J. Appl. Polym. Sci., 103, 2992 (2007).Google Scholar
  58. (58).
    C. Ortiz, C. K. Ober, and E. J. Kramer, Polymer (Guildf), 39, 3713 (1998).CrossRefGoogle Scholar
  59. (59).
    M. C. Roberts, M. C. Hanson, A. P. Massey, E. A. Karren, and P. F. Kiser, Adv. Mater., 19, 2503 (2007).CrossRefGoogle Scholar
  60. (60).
    X. Callies, C. Fonteneau, S. Pensec, L. Chazeau, L. Bouteiller, G. Ducouret, and C. Creton, Macromolecules, 48, 7320 (2015).CrossRefGoogle Scholar
  61. (61).
    X. Zhao, S. Guo, H. Li, J. Liu, C. Su, and H. Song, RSC Adv., 7, 38765 (2017).Google Scholar
  62. (62).
    H. Fan, L. Meng, Y. Wang, X. Wu, S. Liu, Y. Li, and W. Kang, Colloid Surface A, 384, 194 (2011).CrossRefGoogle Scholar
  63. (63).
    H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier Science, Amsterdam, 1989.Google Scholar
  64. (64).
    C. D. Han, Rheology and Processing of Polymeric Materials, Oxford University Press, Oxford, 2007.Google Scholar
  65. (65).
    A. Montesi, A. A. Peña, and M. Pasquali, Phys. Rev. Lett., 92, 1 (2004).CrossRefGoogle Scholar
  66. (66).
    C. O. Osuji and D. A. Weitz, Soft Matter, 4, 1388 (2008).CrossRefGoogle Scholar
  67. (67).
    A. Sierou and J. F. Brady, J. Rheol.(N.Y.N.Y), 46, 1031 (2002).CrossRefGoogle Scholar
  68. (68).
    M. Moan, T. Aubry, and F. Bossard, J. Rheol.(N.Y.N.Y), 47, 1493 (2003).CrossRefGoogle Scholar
  69. (69).
    S. N. B. E. Narimissa, A. Rahman, R. K. Gupta, and N. Kao, Polym. Eng. Sci., 54, 1300 (2014).CrossRefGoogle Scholar
  70. (70).
    W. Han, T. Zhao, and X. Wang, Polymer (United Kingdom), 57, 150 (2015).Google Scholar
  71. (71).
    P. A. Janmey, M. E. McCormick, S. Rammensee, J. L. Leight, P. C. Georges, and F. C. MacKintosh, Nat. Mater., 6, 48 (2007).CrossRefGoogle Scholar
  72. (72).
    H. Kang, Q. Wen, P. A. Janmey, J. X. Tang, E. Conti, and F. C. MacKintosh, J. Phys. Chem. B, 113, 3799 (2009).CrossRefGoogle Scholar
  73. (73).
    S. B. Kharchenko, J. F. Douglas, J. Obrzut, E. A. Grulke, and K. B. Migler, Nat. Mater., 3, 564 (2004).CrossRefGoogle Scholar
  74. (74).
    S. I. Jun and H. S. Lee, Appl. Phys. Lett., 100, 1 (2012).Google Scholar
  75. (75).
    R. Zitzumbo–guzman, F. Avalos–belmontes, L. F. R. Valle, J. C. Ortiz–cisneros, S. Alonso–romero, and A. Estrada–monje, Rheol. Acta, 57, 397 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Semiconductor and Chemical EngineeringChonbuk National UniversityJeonbukKorea

Personalised recommendations