Advertisement

Macromolecular Research

, Volume 27, Issue 1, pp 2–9 | Cite as

Strategies to Improve Electrical and Electronic Properties of PEDOT:PSS for Organic and Perovskite Optoelectronic Devices

  • Su-Hun Jeong
  • Soyeong Ahn
  • Tae-Woo LeeEmail author
Review
  • 137 Downloads

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most successful commercialized conducting polymer. PEDOT:PSS is a mixture of two ionomers: positively-charged PEDOT and negatively-charged PSS. PEDOT is a conducting polymer, which has π-π conjugation in its main backbone, and PSS increases charge carrier density in PEDOT by removing electrons from PEDOT during the synthesis process. Many researchers have tried to increase the electrical conductivity, k, of PEDOT:PSS films and applied them to organic and metal halide perovskite optoelectronic devices as transparent electrodes. Recently, the electrical properties of PEDOT:PSS, including k and work function, have been optimized for those optoelectronic devices. Here, we review recent strategies for optimizing the electrical properties of PEDOT:PSS to use them as transparent electrodes.

Keywords

PEDOT:PSS transparent electrode conductivity work function optoelectronic devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. Kumar and C. Zhou, ACS Nano, 4, 11 (2010).CrossRefGoogle Scholar
  2. (2).
    S.-H. Jeong, S.-H. Woo, T.-H. Han, M.-H. Park, H. Cho, Y.-H. Kim, H. Cho, H. Kim, S. Yoo, and T.-W. Lee, NPG Asia Mater., 9, e411 (2017).CrossRefGoogle Scholar
  3. (3).
    N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B.-J. Kim, and K. Lee, Adv. Mater., 26, 2268 (2014).CrossRefGoogle Scholar
  4. (4).
    N. Kim, H. Kang, J.-H. Lee, S. Kee, S. H. Lee, and K. Lee, Adv. Mater., 27, 2317 (2015).CrossRefGoogle Scholar
  5. (5).
    B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. B. Mannsfeld, and Z. Bao, Proc. Natl. Acad. Sci. U.S.A. 112, 14138 (2015).CrossRefGoogle Scholar
  6. (6).
    S. Ahn, S.-H. Jeong, T.-H. Han, and T.-W. Lee, Adv. Opt. Mater., 5, 1600512 (2017).CrossRefGoogle Scholar
  7. (7).
    H. Shi, C. Liu, Q. Jiang, and J. Xu, Adv. Electron. Mater., 1, 150017 (2015).Google Scholar
  8. (8).
    W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. Mcgehee, M. C. Gather, B. Lüssem, L. Müller-meskamp, P. Peumans, and K. Leo, Adv. Mater., 25, 4006 (2013).CrossRefGoogle Scholar
  9. (9).
    S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T. Lee, G.-R. Yi, and J. H. Cho, Nanoscale, 6, 11828 (2014).CrossRefGoogle Scholar
  10. (10).
    S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu, and Z. Yu, ACS Nano, 10, 1795 (2016).CrossRefGoogle Scholar
  11. (11).
    J. Wu, M. Agrawal, A. Becerril, Z. Bao, Z. Liu, K. Y. Chen, and P. Peumans, ACS Nano, 4, 43 (2010).CrossRefGoogle Scholar
  12. (12).
    M. Cai, Z. Ye, T. Xiao, R. Liu, Y. Chen, R. W. Mayer, R. Biswas, K. Ho, R. Shinar, and J. Shinar, Adv. Mater., 24, 4337 (2012).CrossRefGoogle Scholar
  13. (13).
    T.-H. Han, M.-H. Park, S.-J. Kwon, S. Bae, H. Seo, H. Cho, J. Ahn, and T.-W. Lee, NPG Asia Mater., 8, e303 (2016).CrossRefGoogle Scholar
  14. (14).
    T. Han, S. Kwon, N. Li, H. Seo, W. Xu, K. S. Kim, and T. Lee, Angew. Chem. Int. Ed., 798, 6197 (2016).CrossRefGoogle Scholar
  15. (15).
    H.-K. Seo, H. Kim, J. Lee, M.-H. Park, S.-H. Jeong, Y.-H. Kim, S.-J. Kwon, T.-H. Han, S. Yoo, and T.-W. Lee, Adv. Mater., 29, 1605587 (2017).CrossRefGoogle Scholar
  16. (16).
    T.-H. Han, H. Kim, S.-J. Kwon, and T.-W. Lee, Mater. Sci. Eng. R, 118, 1 (2017).CrossRefGoogle Scholar
  17. (17).
    J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp, and G. G. Malliaras, Nat. Commun., 7, 11287 (2016).CrossRefGoogle Scholar
  18. (18).
    S. Kim, S. Y. Kim, M. H. Chung, J. Kim, and J. H. Kim, J. Mater. Chem. C, 3, 5859 (2015).CrossRefGoogle Scholar
  19. (19).
    J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, Sol. Energy Mater. Sol. Cells, 110, 98 (2013).CrossRefGoogle Scholar
  20. (20).
    D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. Tee, J. A. Bolander, and Z. Bao, Chem. Mater., 24, 373 (2012).CrossRefGoogle Scholar
  21. (21).
    M. Vosgueritchian, D. J. Lipomi, and Z. Bao, Adv. Funct. Mater., 22, 421 (2012).CrossRefGoogle Scholar
  22. (22).
    Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-meskamp, and K. Leo, Adv. Funct. Mater., 21, 1076 (2011).CrossRefGoogle Scholar
  23. (23).
    W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, and Y. Cao, Energy Environ. Sci., 6, 1956 (2013).CrossRefGoogle Scholar
  24. (24).
    Y. Xia, K. Sun, and J. Ouyang, Energy Environ. Sci., 5, 5325 (2012).CrossRefGoogle Scholar
  25. (25).
    Z. Yu, Y. Xia, D. Du, and J. Ouyang, ACS Appl. Mater. Interfaces, 8, 11629 (2016).CrossRefGoogle Scholar
  26. (26).
    Y. Xia, K. Sun, and J. Ouyang, J. Mater. Chem. A, 3, 15897 (2015).CrossRefGoogle Scholar
  27. (27).
    B. Zhang, J. Sun, H. E. Katz, F. Fang, and R. L. Opila, ACS Appl. Mater. Interfaces, 2, 3170 (2010).CrossRefGoogle Scholar
  28. (28).
    I. Lee, G. W. Kim, M. Yang, and T. Kim, ACS Appl. Mater. Interfaces, 8, 302 (2016).CrossRefGoogle Scholar
  29. (29).
    H. Yan, T. Jo, and H. Okuzaki, Polym. J., 41, 1028 (2009).CrossRefGoogle Scholar
  30. (30).
    M. W. Lee, M. Y. Lee, J. C. Choi, J. S. Park, and C. K. Song, Org. Electron., 11, 854 (2010).CrossRefGoogle Scholar
  31. (31).
    A. M. Nardes, M. Kemerink, M. M. De Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Org. Electron., 9, 727 (2008).CrossRefGoogle Scholar
  32. (32).
    N. Kim, B. H. Lee, D. Choi, G. Kim, H. Kim, J. Kim, J. Lee, Y. H. Kahng, and K. Lee, Phys. Rev. Lett., 109, 106405 (2012).CrossRefGoogle Scholar
  33. (33).
    D. Alemu, H.-Y. Wei, K.-C. Hod, and C.-W. Chu, Energy Environ. Sci., 5, 9662 (2012).CrossRefGoogle Scholar
  34. (34).
    H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, Science, 350, 1222 (2015).CrossRefGoogle Scholar
  35. (35).
    Y. Zhou, C. Fuentes-hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science, 336, 327 (2012).CrossRefGoogle Scholar
  36. (36).
    C. M. Palumbiny, C. Heller, C. J. Scha, V. Ko, G. Santoro, S. V. Roth, and P. Mu, J. Phys. Chem. C, 118, 13598 (2014).CrossRefGoogle Scholar
  37. (37).
    N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, and K. Lee, Adv. Mater., 26, 2268 (2014).CrossRefGoogle Scholar
  38. (38).
    Y. Xia, K. Sun, and J. Ouyang, J. Mater. Chem. A, 3, 15897 (2015).CrossRefGoogle Scholar
  39. (39).
    C. Yeon, S. J. Yun, J. Kim, and J. W. Lim, Adv. Electron. Mater., 1, 1500121 (2015).CrossRefGoogle Scholar
  40. (40).
    Y. Zhang, Z. Wu, P. Li, L. K. Ono, Y. Qi, J. Zhou, H. Shen, C. Surya, and Z. Zheng, Adv. Energy Mater., 8, 1701569 (2018).CrossRefGoogle Scholar
  41. (41).
    G. Giri, D. M. Delongchamp, J. Reinspach, D. A. Fischer, L. J. Richter, J. Xu, S. Benight, A. Ayzner, M. He, and L. Fang, Chem. Mater., 27, 2350 (2015).CrossRefGoogle Scholar
  42. (42).
    G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature, 480, 504 (2011).CrossRefGoogle Scholar
  43. (43).
    S. Kim, B. Sanyoto, W. Park, S. Kim, S. Mandal, J. Lim, Y. Noh, and J. Kim, Adv. Mater., 28, 10149 (2016).CrossRefGoogle Scholar
  44. (44).
    U. Voigt, W. Jaeger, G. H. Findenegg, and R. Klitzing, J. Phys. Chem. B, 107, 5273 (2003).CrossRefGoogle Scholar
  45. (45).
    O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-talemi, D. Dagnelund, J. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andereasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, Nat. Mater., 13, 190 (2013).CrossRefGoogle Scholar
  46. (46).
    T. Lee and Y. Chung, Adv. Funct. Mater., 18, 2246 (2008).CrossRefGoogle Scholar
  47. (47).
    B. K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, Adv. Mater., 19, 441 (2007).CrossRefGoogle Scholar
  48. (48).
    B. S. Na, S. Kim, J. Jo, and D. Kim, Adv. Mater., 20, 4061 (2008).CrossRefGoogle Scholar
  49. (49).
    M.-H. Park, S.-H. Jeong, H.-Y. Seo, C. Wolf, Y.-H. Kim, H. Kim, J. Byun, J. Sung, H. Cho, and T.-W. Lee, Nano Energy, 42, 157 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang, GyeongbukKorea
  3. 3.BK21 PLUS SNU Materials Division for Educating Creative Global LeadersSeoul National UniversitySeoulKorea
  4. 4.Nano Systems Institute (NSI), Institute of Engineering Research, Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea

Personalised recommendations