Advertisement

Non-Isothermal Crystallization and Degradation Kinetic Studies of Synthesized Mo-TG end Capped Poly(ε-Caprolactone)

  • Sehar Mahalakshmi
  • Thangevel Alagesan
  • Vellaichamy ParthasarathyEmail author
  • Ramasamy Anbarasan
Article
  • 6 Downloads

Abstract

The molybdenum thioglycolate (Mo-TG) end capped poly(ε-caprolactone) (PCL) was prepared in the presence of novel Mo-TG nanohybrid initiator by ring opening polymerization (ROP) technique. The structural analysis was carried out by FTIR, 1H and 13C NMR techniques for the synthesized PCL. The particle size of the end capped Mo-TG nano hybrid in the PCL matrix was analysed by HRTEM. The morphology, surface roughness and average surface roughness of the polymer sample were investigated by AFM. The geometry of the nucleated crystals of PCL was examined using polarized optical microscopy (POM). The crystallization and thermal history of the sample under non-isothermal condition were assessed by DSC and TGA. The morphology of the nucleated crystals was analysed theoretically with the help of kinetic models for Mo-TG end capped PCL under non-isothermal crystallization condition. The kinetic parameters associated with crystallization and degradation processes of PCL were also determined using various kinetic models.

Keywords

PCL crystallization degradation spherulite AFM POM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K. Zoltowska, M. Sobczak, and E. Oledzka, Molecules, 20, 2816 (2015).CrossRefGoogle Scholar
  2. (2).
    J. Khandare and T. Minko, Prog. Polym. Sci., 31, 359 (2006).CrossRefGoogle Scholar
  3. (3).
    M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci., 35, 1217 (2010).CrossRefGoogle Scholar
  4. (4).
    M. Sobczak, E. Olędzka, W. L. Kołodziejski, and R. Kuźmicz, Polimery, 52, 411 (2007).CrossRefGoogle Scholar
  5. (5).
    L. S. Nair and C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007).CrossRefGoogle Scholar
  6. (6).
    M. Labet and W. Thielemans, Chem. Soc. Rev., 38, 3484 (2009).CrossRefGoogle Scholar
  7. (7).
    W. Meelua, V. Buaown, R. Molloy, and W. Punyodom, Adv. Mater. Res., 506, 142 (2012).CrossRefGoogle Scholar
  8. (8).
    H. M. Sun, H. R. Li, C.S. Yao, Y. M. Yao, H. T. Sheng, and Q. Shen, Chin. J. Chem., 23, 1541 (2005).CrossRefGoogle Scholar
  9. (9).
    L. Kannammal, S. Palanikumar, B. Meenarathi, and R. Anbarasan, J. Thermoplast. Compos. Mater., 30, 1056 (2017).CrossRefGoogle Scholar
  10. (10).
    A. Sowkath, M. Ahmad, and R. Anbarasan, Int. J. Chem. Biol. Sci., 1, 1 (2014).Google Scholar
  11. (11).
    J. M. Contreras, D. Medina, F. L. Carrasquero, and R. B. Contreras, J. Polym. Res., 20, 244 (2013).CrossRefGoogle Scholar
  12. (12).
    L. Liao, C. Zhang, and S. Gong, Macromol. Rapid Commun., 28, 1148 (2007).CrossRefGoogle Scholar
  13. (13).
    Z. X. Du, J. T. Xu, Y. Yang, and Z. Q. Fan, J. Appl. Polym. Sci., 105, 771 (2007).Google Scholar
  14. (14).
    R. J. Pounder and A. P. Dove, Polym. Chem., 1, 260 (2010).CrossRefGoogle Scholar
  15. (15).
    V. Darcos, S. E. Habnouni, B. Nottelet, A. E. Ghaoui, and J. Coudane, Polym. Chem., 1, 280 (2010).CrossRefGoogle Scholar
  16. (16).
    J. Zhang and Z. Qiu, Ind. Eng. Chem. Res., 50, 13885 (2011).CrossRefGoogle Scholar
  17. (17).
    B. Wang, Y. Li, G. Weng, Z. Jiang, P. Chen, Z. Wang, and Q. Gu, Compos. Sci. Technol., 96, 63 (2014).CrossRefGoogle Scholar
  18. (18).
    L. S. Oliveira Pires, M. H. F. Vaz Fernandes, and J. M. Marques de Oliveira, J. Therm. Anal. Calorim., 134, 2115 (2018).CrossRefGoogle Scholar
  19. (19).
    Y. Huang, H. Liu, P. He, L. Yuan, H. Xiong, and Y. Xu, J. Appl. Polym. Sci., 116, 2119 (2010).Google Scholar
  20. (20).
    W. T. Chuang, U. S. Jeng, and H.,S. Sheu, Macromol. Res., 14, 45 (2006).CrossRefGoogle Scholar
  21. (21).
    X. Qiao, W. Li, K. Sun, S. Xu, and X. Chen, J. Appl. Polym. Sci., 111, 2908 (2009).Google Scholar
  22. (22).
    S. P. K. Vangala, A. Chaudhary, P. Tiwari, and V. Katiyar, J. Energy Environ. Sustain., 3, 10 (2017).Google Scholar
  23. (23).
    G. Sivalingam, R. Karthik, and G. Madras, J. Anal. Appl. Pyrolys., 70, 631 (2003).CrossRefGoogle Scholar
  24. (24).
    K. Chrissafis, J. Therm. Anal. Calorim., 95, 273 (2009).CrossRefGoogle Scholar
  25. (25).
    K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, and D. N. Bikiaris, Compos. Sci. Technol., 67, 2165 (2007).CrossRefGoogle Scholar
  26. (26).
    M. Mucha, M. Tylman, and J. Mucha, Polimery, 60, 11 (2015).Google Scholar
  27. (27).
    M. W. Tzong and E. C. Chen, Polym. Eng. Sci., 46, 1309 (2006).CrossRefGoogle Scholar
  28. (28).
    Y. Li, C. Han, Y. Yu, L. Xiao, and Y. Shao, J. Therm. Anal. Calorim., 131, 2213 (2018).CrossRefGoogle Scholar
  29. (29).
    S. Achla, N. Maiti, and J. Jacob, Int. J. Polym. Anal. Charact., 22, 222 (2017).CrossRefGoogle Scholar
  30. (30).
    Y. Marquez, L. Franco, and J. Puiggali, Thermochim. Acta, 550, 65 (2012).CrossRefGoogle Scholar
  31. (31).
    P. Tiwari and M. Deo, AICHE. J., 58, 505 (2012).CrossRefGoogle Scholar
  32. (32).
    M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, and A. K. Mohantty, Prog. Polym. Sci., 38, 1653 (2013).CrossRefGoogle Scholar
  33. (33).
    S. Vyazovkin and N. Sbirrazzuoli, Macromol. Rapid Commun., 27, 1515 (2006).CrossRefGoogle Scholar
  34. (34).
    B. Meenarathi, P. Siva, S. Palanikumar, L. Kannammal, and R. Anbarasan, Nanocomposites, 2, 98 (2016).CrossRefGoogle Scholar
  35. (35).
    L. Wang and J. Sheng, J. Macromol. Sci. Part B: Phys., 44, 31 (2014).CrossRefGoogle Scholar
  36. (36).
    J. Ahmed, G. Luciano, I. Schizzi, Y. Ali Arfat, S. Maggiore, T. Lidia, and A. Thai, Thermochim. Acta, 659, 96 (2018).CrossRefGoogle Scholar
  37. (37).
    F. Shehzad, S. P. Thomas, and M. A. Al–Harthi, Thermochim. Acta, 589, 226 (2014).CrossRefGoogle Scholar
  38. (38).
    K. Kawazu, S. Nakagawa, T. Ishizone, S. Nojima, D. Arai, K. Yamaguchi, and S. Nakahama, Macromolecules, 50, 7202 (2017).CrossRefGoogle Scholar
  39. (39).
    A. Jancirani, V. Kohila, B. Meenarathi, A. Yellilarasi, and R. Anbarasan, Bull. Mater. Sci., 39, 1725 (2016).CrossRefGoogle Scholar
  40. (40).
    P. Demir, J. Sci. Eng., 17, 73 (2017).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Sehar Mahalakshmi
    • 1
  • Thangevel Alagesan
    • 2
  • Vellaichamy Parthasarathy
    • 3
    Email author
  • Ramasamy Anbarasan
    • 4
  1. 1.Department of PhysicsAnand Institute of Higher Technology, KazhipatturChennaiIndia
  2. 2.Department of PhysicsPresidency CollegeChennaiIndia
  3. 3.Department of PhysicsHindustan Institute of Technology and Science, PadurChennaiIndia
  4. 4.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations