Effect of Dimethyl 1,4-Cyclohexane Dicarboxylate on Mechanical Properties and Crystallization Behavior of Polytrimethylene Terephthalate Co-Polymer

  • Han Na Kim
  • Daesun Park
  • Je Sung Youm
  • Bookyeong Jang
  • Jeong Cheol KimEmail author


Dimethyl 1,4-cyclohexane dicarboxylate (DMCD) is formed as an impurity when dimethyl terephthalate (DMT) is manufactured from biomass. Because the boiling point of DMCD is similar to that of DMT, DMCD is known to add considerable cost to the separation and refinement. This prompted us to investigate the effect of the presence of varying amounts of DMCD on the physical properties of poly(trimethylene terephthalate) (PTT), which is manufactured from DMT. In the present study, a small amount of DMCD (1-5 mol% of DMT) was added when manufacturing PTT through the polycondensation of DMT and propanediol (PDO). The results of the analysis of the thermal properties indicated that the glass transition temperature and melting temperature showed a decreasing tendency as the DMCD content increased. The thermal stability increased by 25 °C compared to that of virgin PTT. The iso-thermal scanning analysis showed that the crystallization rate with 1 mol% of DMCD increased compared to that of virgin PTT, whereas the crystallization rate decreased with a higher DMCD content. The mechanical properties are noteworthy. The tensile strength and the tensile strain were simultaneously improved with the addition of DMCD, and the initial modulus remained nearly constant within the range of this experiment. Particularly, the tensile strength increased by a maximum of 15% (76.5 MPa) compared to that of virgin PTT. The physical properties of the PTT co-polyester significantly changed when the DMCD content was 2 mol%. Overall, the thermal properties remained similar, the crystallization rate increased, and the thermal stability and mechanical properties were significantly improved up to 2 mol%. Furthermore, the viscosity and crystal structure were examined by capillary rheometry and X-ray diffraction (XRD) to investigate the changes in these two properties. We concluded that the presence of bio-byproducts such as DMCD enhances the mechanical properties of PTT, such as the tensile strength and strain.


poly(trimethylene terephthalate) (PTT) biomass dimethyl 1,4-cyclohexane dicarboxylate DMCD mechanical properties crystallization behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Spierling, E. Knüpffer, H. Behnsen, M. Mudersbach, H. Krieg, S. Springer, S. Albrecht, C. Herrmann, and H. J. Endres, J. Cleaner Prod., 185, 476 (2018).CrossRefGoogle Scholar
  2. (2).
    H. Kawaguchi, C. Ogino, and A. Kondo, Bioresour. Technol., 245, 1413 (2017).CrossRefGoogle Scholar
  3. (3).
    H. H. Chuah, Polym. Eng. Sci., 41, 308 (2001).CrossRefGoogle Scholar
  4. (4).
    S. Kim, H. Kim, and B. Nam, Asian J. Chem., 25, 5143 (2013).CrossRefGoogle Scholar
  5. (5).
    W. J. Bae, W. H. Jo, and Y. H. Park, Macromol. Res., 10, 145 (2002).CrossRefGoogle Scholar
  6. (6).
    W. Liu, A. K. Mohanty, L. T. Drzal, M. Misra, J. V. Kurian, R. W. Miller, and N. Strickland, Ind. Eng. Chem. Res., 44, 857 (2005).CrossRefGoogle Scholar
  7. (7).
    J. Wang, C. Wang, and M. Run, Int. J. Polym. Sci., 2013 (2013).Google Scholar
  8. (8).
    S. K. Na, B. G. Kong, C. Choi, M. K. Jang, J. W. Nah, J.–G. Kim, and B. W. Jo, Macromol. Res., 13, 88 (2005).CrossRefGoogle Scholar
  9. (9).
    Z. Liu, K. Chen, and D. Yan, Eur. Polym. J., 39, 2359 (2003).CrossRefGoogle Scholar
  10. (10).
    N. Dangseeyun, P. Srimoaon, P. Supaphol, and M. Nithitanakul, Thermochim. Acta, 409, 63 (2004).CrossRefGoogle Scholar
  11. (11).
    K. J. Hsiao, S. P. Lee, D. C. Kong, and F. L. Chen, J. Appl. Polym. Sci., 102, 1008 (2006).CrossRefGoogle Scholar
  12. (12).
    H. Zou, C. Yi, L. Wang, and W. Xu, Polym. Bull., 64, 471 (2010).CrossRefGoogle Scholar
  13. (13).
    J. M. Huang and F. C. Chang, J. Polym. Sci., Part B: Polym. Phys., 38, 934 (2000).CrossRefGoogle Scholar
  14. (14).
    W. J. Yoon, K. S. Oh, J. M. Koo, J. R. Kim, K. J. Lee, and S. S. Im, Macromolecules, 46, 2930 (2013).CrossRefGoogle Scholar
  15. (15).
    P. D. Hong, W. T. Chung, and C. F. Hsu, Polymer, 43, 3335 (2002).CrossRefGoogle Scholar
  16. (16).
    C. Berti, A. Celli, P. Marchese, E. Marianucci, G. Barbiroli, and F. Di Credico, Macromol. Chem. Phys., 209, 1333 (2008).CrossRefGoogle Scholar
  17. (17).
    Y. Liu and S. R. Turner, J. Polym. Sci., Part A: Polym. Chem., 48, 2162 (2010).CrossRefGoogle Scholar
  18. (18).
    M. Albanese, J. Boyenval, P. Marchese, S. Sullalti, and A. Celli, AIMS Mol. Sci., 3, 32 (2016).CrossRefGoogle Scholar
  19. (19).
    A. Celli, P. Marchese, S. Sullalti, C. Berti, and G. Barbiroli, Macromol. Chem. Phys., 212, 1524 (2011).CrossRefGoogle Scholar
  20. (20).
    C. Berti, E. Binassi, A. Celli, M. Colonna, M. Fiorini, P. Marchese, E. Marianucci, M. Gazzano, F. Di Credico, and D. J. Brunelle, J. Polym. Sci., Part B: Polym. Phys., 46, 619 (2008).CrossRefGoogle Scholar
  21. (21).
    B. Vanhaecht, M. N. Teerenstra, D. R. Suwier, R. Willem, M. Biesemans, and C. E. Koning, J. Polym. Sci., Part A: Polym. Chem., 39, 833 (2001).CrossRefGoogle Scholar
  22. (22).
    C. Berti, A. Celli, P. Marchese, E. Marianucci, S. Sullalti, and G. Barbiroli, Macromol. Chem. Phys., 211, 1559 (2010).CrossRefGoogle Scholar
  23. (23).
    T. Sandhya, C. Ramesh, and S. Sivaram, Macromolecules, 40, 6906 (2007).CrossRefGoogle Scholar
  24. (24).
    L. Wang, Z. Xie, X. Bi, X. Wang, A. Zhang, Z. Chen, J. Zhou, and Z. Feng, Polym. Degrad. Stab., 91, 2220 (2006).CrossRefGoogle Scholar
  25. (25).
    S. W. Hu, H. S. Myung, J. S. Bae, E. S. Yoo, and S. S. Im, Fibers Polym., 1, 76 (2000).CrossRefGoogle Scholar
  26. (26).
    Y. M. Sun and C. S. Wang, Eur. Polym. J., 35, 1087 (1999).CrossRefGoogle Scholar
  27. (27).
    H. Ki and O. O. Park, Polymer, 42, 1849 (2001).CrossRefGoogle Scholar
  28. (28).
    S. Paszkiewicz, A. Szymczyk, K. Livanov, H. Wagner, and Z. Rosłaniec, eXPRESS Polym. Lett., 9, 509 (2015).CrossRefGoogle Scholar
  29. (29).
    C. F. Ou, J. Polym. Sci., B: Polym. Phys., 41, 2902 (2003).CrossRefGoogle Scholar
  30. (30).
    G. Wei, D. Hua, and L. Gu, J. Appl. Polym. Sci., 101, 3330 (2006).CrossRefGoogle Scholar
  31. (31).
    S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625 (2003).CrossRefGoogle Scholar
  32. (32).
    T. Gopakumar, J. Lee, M. Kontopoulou, and J. Parent, Polymer, 43, 5483 (2002).CrossRefGoogle Scholar
  33. (33).
    S. Paszkiewicz, A. Szymczyk, Z. Špitalský, J. Mosnáček, K. Kwiatkowski, and Z. Rosłaniec, Eur. Polym. J., 50, 69 (2014).CrossRefGoogle Scholar
  34. (34).
    A. Szymczyk, S. Paszkiewicz, and Z. Roslaniec, Polym. Bull., 70, 1575 (2013).CrossRefGoogle Scholar
  35. (35).
    R. Sharma, P. Jain, and S. D. Sadhu, Arabian J. Sci. Eng., 1 (2018).Google Scholar
  36. (36).
    A. Pei, Q. Zhou, and L. A. Berglund, Compos. Sci. Technol., 70, 815 (2010).CrossRefGoogle Scholar
  37. (37).
    P. Srimoaon, N. Dangseeyun, and P. Supaphol, Eur. Polym. J., 40, 599 (2004).CrossRefGoogle Scholar
  38. (38).
    P. Krutphun and P. Supaphol, Eur. Polym. J., 41, 1561 (2005).CrossRefGoogle Scholar
  39. (39).
    I. Aravind, A. Boumod, Y. Grohens, and S. Thomas, Ind. Eng. Chem. Res., 49, 3873 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Han Na Kim
    • 1
  • Daesun Park
    • 2
  • Je Sung Youm
    • 1
  • Bookyeong Jang
    • 3
  • Jeong Cheol Kim
    • 1
    Email author
  1. 1.Korea Institute of Industrial TechnologyGwangjuKorea
  2. 2.Sebang IndustrialGwangjuKorea
  3. 3.HuvisSeoulKorea

Personalised recommendations