Poly(vinyl alcohol) Hydrogel/Chitosan-Modified Clay Nanocomposites for Wound Dressing Application and Controlled Drug Release

  • Samira Feiz
  • Amir H. NavarchianEmail author


Poly(vinyl alcohol) hydrogel films containing (1-5% (w/w)) chitosan-modified montmorrilonite (CsMMT) were prepared through phase separation method for wound dressing application. The prepared nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of organoclay content on gel fraction, water vapor permeability, water uptake and tensile/rheological properties of films were also investigated. The XRD patterns and TEM micrographs show intercalated/partially exfoliated morphology of nanocomposites. The strong interactions between the polymer matrix and silicate layers via the formation of hydrogen bonds increase the gel fraction and tensile strength of hydrogels. It was found that the equilibrium water absorption, water diffusion coefficient and water vapor permeability were strongly affected by crystallite size of PVA macromolecules and tortuous path originated from CsMMT. The most appropriate results for the examined properties were obtained for 3% CsMMT content (w/w). The rheological results indicated a dominant elastic property and strong network structure for the hydrogels. The wound dressing films were loaded with nitrofurazone (NFZ) and their drug release behavior was studied at simulated wound condition. The drug loading and the release rate of NFZ showed a dependency on the quantity of CsMMT in the membrane. The interaction between NFZ and CsMMT together with tortuosity due to the presence of silicate layers, controlled the duration of total drug release to over 6 days. A Fickian diffusion mechanism was found for the drug release from the nanocomposite membranes.


poly(vinyl alcohol) clay chitosan wound dressing drug release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. H. Sung, M. R. Hwang, J. O. Kim, J. H. Lee, Y. I. Kim, J. H. Kim, and H. G. Choi, Int. J. Pharm., 392, 232 (2010).CrossRefGoogle Scholar
  2. (2).
    S. Feiz, A. H. Navarchian, and O. M. Jazani, Iran. Polym. J., 27, 193 (2018).CrossRefGoogle Scholar
  3. (3).
    M. Kouchak, A. Ameri, B. Naseri, and S. K. Boldaji, Iran. J. Basic. Med. Sci., 17, 14 (2014).Google Scholar
  4. (4).
    C. M. Paranhos, B. G. Soares, R. N. Oliveira, and L. A. Pessan, Macromol. Mater. Eng., 292, 620 (2007).CrossRefGoogle Scholar
  5. (5).
    M. Sirousazar, M. Kokabi, Z. Hassan, and A. Bahramian, J. Macromol. Sci. B, 51, 1335 (2012).CrossRefGoogle Scholar
  6. (6).
    M. Kokabi, M. Sirousazar, and Z. M. Hassan, Eur. Polym. J., 43, 773 (2007).CrossRefGoogle Scholar
  7. (7).
    T. M. Wu and C. Y. Wu, Polym. Degrad. Stab., 91, 2198 (2006).CrossRefGoogle Scholar
  8. (8).
    K. Kabiri, H. Mirzadeh, M. J. Zohuriaan–Mehr, and M. Daliri, Polym. Int., 58, 1252 (2009).CrossRefGoogle Scholar
  9. (9).
    E. Părpăriţă, C. N. Cheaburu, S. F. Pațachia, and C. Vasile, Acta Chemica Iasi, 22, 75 (2014).CrossRefGoogle Scholar
  10. (10).
    H. Zheng, Y. Du, J. Yu, R. Huang, and L. Zhang, J. Appl. Polym. Sci., 80, 2558 (2001).CrossRefGoogle Scholar
  11. (11).
    S. Komiya, E. Otsuka, Y. Hirashima, and A. Suzuki, Prog. Nat. Sci. Mater. Int., 21, 375 (2011).CrossRefGoogle Scholar
  12. (12).
    F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).CrossRefGoogle Scholar
  13. (13).
    H. Nakajima, Z. Wang, and K. Strawhecker, MRS Online Proceedings Library Archive, 791, Q4.10.1 (2003).Google Scholar
  14. (14).
    D. Mondal, M. M. R. Mollick, B. Bhowmick, D. Maity, M. K. Bain, D. Rana, A. Mukhopadhyay, K. Dana, and D. Chattopadhyay, Prog. Natl. Sci. Mater. Int., 23, 579 (2013).CrossRefGoogle Scholar
  15. (15).
    C. M. Tang, Y. H. Tian, and S. H. Hsu, Materials, 8, 4895 (2015).CrossRefGoogle Scholar
  16. (16).
    J. Mao, Q. Gu, and D. H. Gregoy, Materials, 8, 2191 (2015).CrossRefGoogle Scholar
  17. (17).
    A. Karimi, W. Daud, and W. M. Ashri, Polym. Compos., 38, 1135 (2015).CrossRefGoogle Scholar
  18. (18).
    K. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000).CrossRefGoogle Scholar
  19. (19).
    H. R. Alamery, M. D. I. Hatem, M. S. Ahmad, and M. N. Amira, Aust. J. Basic. Appl. Sci., 9, 295 (2015).Google Scholar
  20. (20).
    S. N. Alhosseini, F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, S. Kargozar, and N. Jalali, Int. J. Nanomedicine, 7, 25 (2012).Google Scholar
  21. (21).
    O. Tretinnikov and S. Zagorskaya, J. Appl. Spectrosc., 79, 521 (2012).CrossRefGoogle Scholar
  22. (22).
    K. Choo, Y. C. Ching,, C. H. Chuah, S. Julai, and N. S. Liou, Materials, 9, 644 (2016).CrossRefGoogle Scholar
  23. (23).
    K. Majdzadeh–Ardakani, A. H. Navarchian, and F. Sadeghi, Carbohydr. Polym., 79, 547 (2010).CrossRefGoogle Scholar
  24. (24).
    M. Lim, D. Kim, H. Han, S. B. Khan, and J. Seo, Polym. Compos., 36, 660 (2015).CrossRefGoogle Scholar
  25. (25).
    S. Bajpai, J. Appl. Polym. Sci., 80, 2782 (2001).CrossRefGoogle Scholar
  26. (26).
    P. Duangkaew and J. Wootthikanokkhan, J. Appl. Polym. Sci., 109, 452 (2008).CrossRefGoogle Scholar
  27. (27).
    C. Johansson and F. Clegg, J. Appl. Polym. Sci., 132, 1 (2015).Google Scholar
  28. (28).
    N. A. Peppas and N. M. Franson, J. Polym. Sci., Part B: Polym. Phys., 21, 983 (1983).Google Scholar
  29. (29).
    Y. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 81, 1624 (2001).CrossRefGoogle Scholar
  30. (30).
    Q. Soundararajah, B. Karunaratne, and R. Rajapakse, J. Compos. Mater., 44, 303 (2010).CrossRefGoogle Scholar
  31. (31).
    H. M. Jeong, B. C. Kim, and E. H. Kim, J. Mater. Sci., 40, 3783 (2005).CrossRefGoogle Scholar
  32. (32).
    R. Pereira, A. Carvalho, D. C. Vaz, M. H. Gil, A. Mendes, and P. Bártolo, Int. J. Biol. Macromol., 52, 221 (2013).CrossRefGoogle Scholar
  33. (33).
    H. Yu, X. Xu, X. Chen, J. Hao, and X. Jing, J. Appl. Polym. Sci., 101, 2453 (2006).CrossRefGoogle Scholar
  34. (34).
    D. Calvet, J. Y. Wong, and S. Giasson, Macromolecules, 37, 7762 (2004).CrossRefGoogle Scholar
  35. (35).
    E. Butnaru, C. N. Cheaburu, O. Yilmaz, G. M. Pricope, and C. Vasile, High Perform. Polym., 28, 1124 (2016).CrossRefGoogle Scholar
  36. (36).
    F. Deng, C. Dong, and Y. Liu, Mol. BioSyst., 8, 1446 (2012).CrossRefGoogle Scholar
  37. (37).
    X. Wang, Y. Du, and J. Luo, Nanotechnology, 19, 065707 (2008).CrossRefGoogle Scholar
  38. (38).
    J. Siepmann and F. Siepmann, J. Control. Release, 161, 351 (2012).CrossRefGoogle Scholar
  39. (39).
    T. Higuchi, J. Pharm. Sci., 50, 874 (1961).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahan, I. R.Iran

Personalised recommendations