Synchronous Polymerization of 3,4-Ethylenedioxythiophene and Pyrrole by Plasma Enhanced Chemical Vapor Deposition (PECVD) for Conductive Thin Film with Tunable Energy Bandgap

  • Sanghoon Kim
  • Joon Suk Oh
  • Taeseon Hwang
  • Hee Won Seo
  • Dong-Cheol Jeong
  • Jun-Ho Lee
  • Long Wen
  • Changsik Song
  • Jeon Geon Han
  • Jae-Do NamEmail author


Using a plasma enhanced chemical vapor deposition (PECVD) technique, a synchronous polymerization of 3,4-ethylenedioxythiophene (EDOT) and pyrrole monomers was investigated for the development of thin films with adjusted optoelectronic properties. Maintaining a constant amount of EDOT- and pyrrole-feed in the presence of a carrier gas, the PECVD reaction power was varied in the range of 10–100 W to give different physicochemical states of composite films composed of poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy). The deposition rate gradually increased with the reaction power reaching the highest deposition rate at 30 nm/min (100 W) in this study. The energy bandgap of the plasma-polymerized PEDOT/PPy copolymer films increased from 2.62 to 3.27 eV as the applied power density increased from 10 to 100 W in a continuous way, that could desirably ensure a tunable control of bandgaps in thin films. The electrical conductivity and the surface roughness of the thin films continuously increased from 1.59×10-4 to 2.28×10-2 S/m and from 0.2 to 1.9 nm respectively, as the applied power density decreased. The plasma-polymerized PEDOT/PPy copolymer is expected to find its application in various optoelectronic devices including the hole injection layer (HIL) in organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs) for the improved energy match.


3,4-ethylenedioxythiophene pyrrole synchronous polymerization plasma power tunable bandgap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    G. Moad, M. Chen, M. Haussler, A. Postma, E. Rizzardo, and S. H. Thang, Polym. Chem., 2, 492 (2011).CrossRefGoogle Scholar
  2. (2).
    A. Ramanavicius, A. Ramanaviciene, and A. Malinauskas, Electrochim. Acta, 51, 6025 (2006).CrossRefGoogle Scholar
  3. (3).
    H. Bai and G. Shi, Sensors, 7, 267 (2007).CrossRefGoogle Scholar
  4. (4).
    C. K. Chang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).CrossRefGoogle Scholar
  5. (5).
    B. Winther–Jensen and B. West, Macromolecules, 37, 4538 (2004).CrossRefGoogle Scholar
  6. (6).
    T. L. Truong, D. O. Kim, Y. Lee, T. W. Lee, J. J. Park, L. Pu, and J. D. Nam, Thin Solid Films, 516, 6020 (2008).CrossRefGoogle Scholar
  7. (7).
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. Reynolds, Adv. Mater., 12, 481 (2000).CrossRefGoogle Scholar
  8. (8).
    D. M. Welsh, A. Kumar, E. W. Meijer, and J. R. Reynolds, Adv. Mater., 11, 1379 (1999).CrossRefGoogle Scholar
  9. (9).
    S. Admassie, F. Zhang, A. Manoj, M. Svensson, M. Andersson, and O. Inganas, Sol. Energy Mater. Sol. Cells, 90, 133 (2006).CrossRefGoogle Scholar
  10. (10).
    A. Gadisa, K. Tvingstedt, S. Admassie, L. Lindell, X. Crispin, M. Andersson, W. Salaneck, and O. Inganas, Synth. Met., 156, 1102 (2006).CrossRefGoogle Scholar
  11. (11).
    T. Lee and Y. Chung, Adv. Funct. Mater., 18, 2246 (2008).CrossRefGoogle Scholar
  12. (12).
    T. W. Lee, Y. Chung, O. Kwon, and J. J. Park, Adv. Funct. Mater., 17, 390 (2007).CrossRefGoogle Scholar
  13. (13).
    Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, Synth. Met., 131, 185 (2002).CrossRefGoogle Scholar
  14. (14).
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 6951 (1987).Google Scholar
  15. (15).
    K. Hidekazu, K. Sadao, S. Shunichi, K. Hiroshi, K. Mutsumi, Y. Ichio, M. Satoru, S. Tatsuya, C. R. Towns, J. H. Friend, R. H. Burroughes, Synth. Met., 111, 125 (2000).Google Scholar
  16. (16).
    D. K. Yang, in Fundamentals of Liquid Crystal Devices, Wiley, New York, 2001, pp 536–538.Google Scholar
  17. (17).
    S. Sax, N. R. Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List, and K. Mullen, Adv. Mater., 22, 2087 (2010).CrossRefGoogle Scholar
  18. (18).
    K. S. Jang, D. O. Kim, J. H. Lee, S. C. Hong, T. W. Lee, Y. Lee, and J. D. Nam, Org. Electron., 11, 1668 (2010).CrossRefGoogle Scholar
  19. (19).
    C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, J. Mater. Sci., 35, 5645 (2000).CrossRefGoogle Scholar
  20. (20).
    H. C. Lee, K. B. Kim, S. N. Lee, J. Lee, and M. Kim, J. Nanoeng. Nanomanuf., 6, 146 (2016).CrossRefGoogle Scholar
  21. (21).
    S. Lee and K. K. Cleason, Adv. Funct. Mater., 25, 85 (2014).CrossRefGoogle Scholar
  22. (22).
    L. Do, D. Hwang, H. Chu, S. Kim, J. Lee, H. Park, and T. Zyung, Synth. Met., 111, 249 (2000).CrossRefGoogle Scholar
  23. (23).
    K. B. Kim, Y. H. Tak, Y. S. Han, K. H. Baik, and M. H. Lee, J. Appl. Phys., 42, 438 (2003).Google Scholar
  24. (24).
    Y. Xu, J. Wang, W. Sun, and S. Wang, J. Power Sources, 159, 370 (2006).CrossRefGoogle Scholar
  25. (25).
    D. O. Kim, P. C. Lee, S. J. Kang, J. H. Lee, M. H. Cho, and J. D. Nam, Thin Solid Films, 517, 1456 (2009).Google Scholar
  26. (26).
    E. L. Kupila, J. Lukkari, and J. Kankare, Synth. Met., 74, 207 (1995).CrossRefGoogle Scholar
  27. (27).
    G. J. Cruz, J. Morales, M. M. Castillo–Ortega, and R. Olayo, Thin Solid Films, 342, 119 (1999).CrossRefGoogle Scholar
  28. (28).
    H. Goktas, F. G. Ince, A. Iscan, I. Yildiz, M. Kurt, and I. Kaya, Synth. Met., 159, 2001 (2009).CrossRefGoogle Scholar
  29. (29).
    T. W. Kim, J. H. Lee, J. W. Back, W. G. Jung, and J. Y. Kim, Macromol. Res., 17, 31 (2009).CrossRefGoogle Scholar
  30. (30).
    K. S. Jang, Y. S., Eom, T. W. Lee, D. O. Kim, Y. S. Oh, H. C. Jung, and J. D. Nam, ACS Appl. Mater. Interfaces, 1, 1567 (2009).CrossRefGoogle Scholar
  31. (31).
    B. R. Pistillo, K. Menguelti, N. Desbenoit, D. Arl, R. Leturcq, O. M. Ishchenko, M. Kunat, P. K. Baumann, and D. Lenoble, J. Mater. Chem. C, 4, 5617 (2016).CrossRefGoogle Scholar
  32. (32).
    L. M. H. Groenewoud, G. H. M. Engbers, and J. Feijen, Langmuir, 19, 1368 (2003).CrossRefGoogle Scholar
  33. (33).
    K. A. Koparkar, Sens. Transducers J., 143, 10 (2012).Google Scholar
  34. (34).
    M. S. Silverstein and I. Visoly–Fisher, Polymer, 43, 11 (2002).CrossRefGoogle Scholar
  35. (35).
    M. Kristi, F. Bozduman, A. Osuz, A. Hala, and L. Oksuz, J. Macromol. Sci. Part A, 52, 124 (2015).CrossRefGoogle Scholar
  36. (36).
    F. G. Ince, S. Z. Ozbek, H. Goktas, M. E. Oze, and R. Capan, J. Optoelect. Adv. Mater., 11, 1182 (2009).Google Scholar
  37. (37).
    L. M. H. Groenewoud, G. H. M. Engbers, J. G. A. Terlingen, H. Wormeester, and J. Feijen, Langmuir, 15, 6278 (2000).CrossRefGoogle Scholar
  38. (38).
    A. A. Jatratkar, J. B. Yadav, R. R. Deshmukh, H. C. Barshillia, V. Puri, and R. K. Puri, Adv. Mater. Lett., 8, 180 (2017).CrossRefGoogle Scholar
  39. (39).
    A. C. Galca, V. Satulu, M. D. Ionita, E. Barna, M. Dumitru, B. Mitu, and G. Dinescu, J.Optoelectron. Adv. Mater., 10, 2033 (2008).Google Scholar
  40. (40).
    D. C. Jeong, L. Wen, S. Kim, J. D. Nam, J. G. Han, and C. Song, Surf. Coat. Technol., 259, 27 (2014).CrossRefGoogle Scholar
  41. (41).
    L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, and C. Zhan, Electrochim. Acta, 53, 8319 (2008).CrossRefGoogle Scholar
  42. (42).
    L. Li, Y. Huang, G. Yan, F. Liu, Z. Huang, and Z. Ma, Mater. Lett., 63, 8 (2009).CrossRefGoogle Scholar
  43. (43).
    T. A. Chen, X. Wu, and R. Rieke, J. Am. Chem. Soc., 117, 233 (1995).CrossRefGoogle Scholar
  44. (44).
    R. K. Singh, J. Kumar, R. Singh, R. Kant, S. Chand, and V. Kumar, Mater. Chem. Phys., 104, 390 (2007).CrossRefGoogle Scholar
  45. (45).
    S. Marciniak, X. Crispin, K. Uvdal, M. Trzcinski, J. Birgerson, L. Groenendaal, F. Louwet, and W. R. Salaneck, Synth. Met., 141, 67 (2004).CrossRefGoogle Scholar
  46. (46).
    Y. S. Hsiao, W. T. Whang, C. P. Chen, and Y. C. Chen, J. Mater. Chem., 18, 5948 (2008).CrossRefGoogle Scholar
  47. (47).
    S. K. M. Jonson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, W. R. Salaneck, and M. Fahlman, Synth. Met., 139, 1 (2003).CrossRefGoogle Scholar
  48. (48).
    M. C. Kim, S. H. Cho, J. G. Han, B. Y. Hong, Y. J. Kim, S. H. Yang, and J. H. Boo, Surf. Coat. Technol., 169, 595 (2003).CrossRefGoogle Scholar
  49. (49).
    S. C. Mukhopadhyay, K. P. Jayasundera, and A. Fuchs, in Advancement in Sensing Technology: New Developments and Practical Applications, Springer, New York, 2013, pp 299–312.CrossRefGoogle Scholar
  50. (50).
    J. Tauc, in Amorphous and Liquid Semiconductors: Optical Properties of Amorphous Semiconductors, Plenum Press, New York, 1974, pp 159–220.CrossRefGoogle Scholar
  51. (51).
    K. Colladet, S. Fourier, T. J. Cleij, L. Lutsen, and J. Gelan, Macromolecules, 40, 65 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Sanghoon Kim
    • 1
  • Joon Suk Oh
    • 2
  • Taeseon Hwang
    • 3
  • Hee Won Seo
    • 4
  • Dong-Cheol Jeong
    • 5
    • 6
  • Jun-Ho Lee
    • 1
  • Long Wen
    • 7
    • 8
  • Changsik Song
    • 5
    • 6
  • Jeon Geon Han
    • 7
    • 8
  • Jae-Do Nam
    • 1
    • 4
    Email author
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.Center for Soft Matter Research, Department of PhysicsNew York UniversityNew YorkUnited States
  3. 3.Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasUnited States
  4. 4.School of Chemical Engineering, Department of Polymer Science and EngineeringSungkyunkwan UniversitySuwonKorea
  5. 5.Department of ChemistrySungkyunkwan UniversitySuwonKorea
  6. 6.Chemical and Biological Defense Research CenterSungkyunkwan UniversitySuwonKorea
  7. 7.NU-SKKU Joint Institute for Plasma-Nano MaterialsSungkyunkwan UniversitySuwonKorea
  8. 8.Center for Advanced Plasma Surface TechnologySungkyunkwan UniversitySuwonKorea

Personalised recommendations