Advertisement

Enhanced Olefin and CO2 Permeance Through Mesopore-Confined Ionic Liquid Membrane

  • Il Seok Chae
  • Gil Hwan Hong
  • Donghoon Song
  • Yong Soo KangEmail author
  • Sang Wook KangEmail author
Article
  • 21 Downloads

Abstract

Nanocomposites of ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), in three-dimensional mesoporous silica (KIT-6) were fabricated and utilized as mesopore-confined ionic liquid membranes for Olefin and CO2 Separation. Compared to neat BmimBF4, the fabricated membrane showed 10-times-enhanced gas permeation property for olefin separation, and 5-times-enhanced gas permeation property for CO2 separation with gas-selectivity remaining unchanged. Moreover, the enhanced diffusion-limited current density of the electrochemical cell involving I-/I3- redox couple in BmimBF4/KIT-6 nanocomposite was observed. This implies that mesoporous KIT-6 can be used as an effective additive in nanocomposite membranes for enhanced olefin and CO2 permeance.

Keywords

mesoporous materials ionic liquids CO2 olefin separation and iodine diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7036_MOESM1_ESM.pdf (223 kb)
Supporting Information

References

  1. (1).
    Y. Yamauchi, A. Tonegawa, M. Komatsu, H. Wang, L. Wang, Y. Nemoto, N. Suzuki, and K. Kuroda, J. Am. Chem. Soc., 134, 5100 (2012).CrossRefGoogle Scholar
  2. (2).
    Z. Wu and D. Zhao, Chem. Commun., 47, 3332 (2011).CrossRefGoogle Scholar
  3. (3).
    B. Lebeau, A. Galarneau, and M. Linden, Chem. Soc. Rev., 42, 3661 (2013).CrossRefGoogle Scholar
  4. (4).
    J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou, and D. Zhao, Angew. Chem. Int. Ed., 42, 3146 (2003).CrossRefGoogle Scholar
  5. (5).
    M. P. Singh, R. K. Singh, and S. Chandra, ChemPhysChem, 11, 2036 (2010).Google Scholar
  6. (6).
    M. Waechtler, M. Sellin, A. Stark, D. Akcakayiran, G. Findenegg, A. Gruenberg, H. Breitzke, and G. Buntkowsky, Phys. Chem. Chem. Phys., 12, 11371 (2010).CrossRefGoogle Scholar
  7. (7).
    M.-A. Néouze, J. L. Bideau, P. Gaveau, S. Bellayer, and A. Vioux, Chem. Mater., 18, 3931 (2006).CrossRefGoogle Scholar
  8. (8).
    M. Davenport, A. Rodriguez, K. J. Shea, and Z. S. Siwy, Nano Lett., 9, 2125 (2009).CrossRefGoogle Scholar
  9. (9).
    W. Shi and D. C. Sorescu, J. Phys. Chem. B, 114, 15029 (2010).CrossRefGoogle Scholar
  10. (10).
    C. Iacob, J. R. Sangoro, W. K. Kipnusu, R. Valiullin, J. Karger, and F. Kremer, Soft Matter, 8, 289 (2012).CrossRefGoogle Scholar
  11. (11).
    S. W. Kang, K. Char, and Y. S. Kang, Chem. Mater., 20, 1308 (2008).CrossRefGoogle Scholar
  12. (12).
    J. H. Lee, S. W. Kang, D. Song, J. Won, and Y. S. Kang, J. Membr. Sci., 423, 159 (2012).CrossRefGoogle Scholar
  13. (13).
    J. H. Oh, Y. S. Kang, and S. W. Kang, Chem. Commun., 49, 10181 (2013).CrossRefGoogle Scholar
  14. (14).
    E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, J. Am. Chem. Soc., 124, 926 (2002).CrossRefGoogle Scholar
  15. (15).
    D. Camper, P. Scovazzo, C. Koval, and R. Noble, Ind. Eng. Chem. Res., 43, 3049 (2004).CrossRefGoogle Scholar
  16. (16).
    S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, Chem. Commun., 48, 6903 (2012).CrossRefGoogle Scholar
  17. (17).
    B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider, and J. F. Brennecke, J. Am. Chem. Soc., 132, 2116 (2010).CrossRefGoogle Scholar
  18. (18).
    C. Wang, H. Luo, D.-E. Jiang, H. Li, and S. Dai, Angew. Chem. Int. Ed., 49, 5978 (2010).CrossRefGoogle Scholar
  19. (19).
    C. Wang, X. Luo, H. Luo, D.-E. Jiang, H. Li, and S. Dai, Angew. Chem. Int. Ed., 50, 4918 (2011).CrossRefGoogle Scholar
  20. (20).
    G. Gurau, H. Rodríguez, S. P. Kelley, P. Janiczek, R. S. Kalb, and R. D. Rogers, Angew. Chem. Int. Ed., 50, 12024 (2011).CrossRefGoogle Scholar
  21. (21).
    C. Wang, G. Cui, X. Luo, Y. Xu, H. Li, and S. Dai, J. Am. Chem. Soc., 133, 11916 (2011).CrossRefGoogle Scholar
  22. (22).
    W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang, and J. Huang, Angew. Chem. Int. Ed., 43, 2415 (2004).CrossRefGoogle Scholar
  23. (23).
    G. Cui, J. Zheng, X. Luo, W. Lin, F. Ding, H. Li, and C. Wang, Angew. Chem. Int. Ed., 52, 10620 (2013).CrossRefGoogle Scholar
  24. (24).
    F. Kleitz, S. Hei Choi, and R. Ryoo, Chem. Commun., 2136 (2003).Google Scholar
  25. (25).
    A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001).CrossRefGoogle Scholar
  26. (26).
    Y. Sakamoto, T.-W. Kim, R. Ryoo, and O. Terasaki, Angew. Chem. Int. Ed., 43, 5231 (2004).CrossRefGoogle Scholar
  27. (27).
    W. Zhao, G. He, L. Zhang, J. Ju, H. Dou, F. Nie, C. Li, and H. Liu, J. Membr. Sci., 350, 279 (2010).CrossRefGoogle Scholar
  28. (28).
    J. Le Bideau, P. Gaveau, S. Bellayer, M. A. Neouze, and A. Vioux, Phys. Chem. Chem. Phys., 9, 5419 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Energy EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of ChemistrySangmyung UniversitySeoulKorea
  3. 3.Department of Chemistry and Energy EngineeringSangmyung UniversitySeoulKorea

Personalised recommendations