Advertisement

Poly(azomethine)s Anchored by Cresol and Pyrrole Units: Synthesis, Characterization and Spectroscopy Studies

  • İsmet KayaEmail author
  • Feyza Kolcu
  • Gizem Tasvir Arıcı
  • Ezgi Çölekoğlu
Article
  • 17 Downloads

Abstract

In this study, poly(azomethine)s with cresol and pyrrole as side chain units were synthesized in three steps. In the first step; symmetrical dialdehyde bromide (DAB), in the second step; symmetrical derivatives (DAB-1 and DAB-2) of DAB using p-cresol and pyrrole, respectively, and in the third step; poly(azomethine-cresol) (P-1) and poly(azomethine-pyrrole) (P-2) were obtained via condensation reaction. Structures of all synthesized compounds were confirmed by FT-IR, UV-Vis, and 1H NMR spectroscopic analyses. Photophysical and electrochemical properties of these compounds were investigated using photoluminescence (PL) and cyclic voltammetry (CV) measurements, respectively. Based on photoluminescence analysis, the multicolor properties of DAB-2, P-1 and P-2 were observed in DMF solution. Additionally, results of thermal studies of TG-DTA and DSC techniques showed they were thermally stable compounds.

Keywords

poly(azomethine)s multicolor compounds thermal degradation quantum yields porous and granular surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. J. Vasanthi and L. Ravikumar, Open J. Polym. Chem., 3, 70 (2013).CrossRefGoogle Scholar
  2. (2).
    K. Fukuda, M. Shimoda, M. Sukegawa, T. Nobori, and J. M. Lehn, Green Chem., 14, 2907 (2012).CrossRefGoogle Scholar
  3. (3).
    S. Banerjee, P. K. Gutch, and C. Saxena, J. Polym. Sci., Part A: Polym. Chem., 33, 1719 (1995).CrossRefGoogle Scholar
  4. (4).
    S. Banerjee, P. K. Gutch, and C. Saxena, Des. Monomers Polym., 2,135 (1999).CrossRefGoogle Scholar
  5. (5).
    M. Omastova, M. Trchova, J. Kovarova, and J. Stejskal, Synth. Met., 138, 447 (2003).CrossRefGoogle Scholar
  6. (6).
    S. P. Armes, Synth. Met., 20, 365 (1987).CrossRefGoogle Scholar
  7. (7).
    G. J. Qi, L. Y. Huang, and H. L. Wang, Chem. Commun., 48, 8246 (2012).CrossRefGoogle Scholar
  8. (8).
    Y. Yang, Q. Zhang, J. Zheng, and S. Zhang, Polymer, 54, 3254 (2013).CrossRefGoogle Scholar
  9. (9).
    L. X. Wang, X. G. Liand, and Y. L. Yang, React. Funct. Polym., 47, 125 (2001).CrossRefGoogle Scholar
  10. (10).
    A. Ramanavicius, A. Ramanaviciene, and A. Malinauskas, Electrochim. Acta, 51, 6025 (2006).CrossRefGoogle Scholar
  11. (11).
    S. S. Razola, B. L. Ruiz, N. M. Diez, H. B. Jr. Mark, and J. M. Kauffmann, Biosens. Bioelectron., 17, 921 (2002).CrossRefGoogle Scholar
  12. (12).
    K. Habermüller, A. Ramanavicius, V. Laurinavicius, and W. Schuhmann, Electroanalysis, 12, 1383 (2000).CrossRefGoogle Scholar
  13. (13).
    S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, Biosens. Bioelectron., 17, 53 (2002).CrossRefGoogle Scholar
  14. (14).
    S. Komaba, M. Seyama, T. Momma, and T. Osaka, Electrochim. Acta, 42, 383 (1997).CrossRefGoogle Scholar
  15. (15).
    E. Sahmetlioğlu, H. Yürük, L. Toppare, I. Cianga, and Y. Yağci, React. Funct. Polym., 66, 365 (2006).CrossRefGoogle Scholar
  16. (16).
    S. Cosnier, A. Senillou, M. Gratzel, P. Comete, N. Vlachopoulas, N. J. Renault, and C. Martelet, J. Electroanal. Chem., 469, 176 (1999).CrossRefGoogle Scholar
  17. (17).
    J. Wang and M. Musameh, Anal. Chim. Acta, 539, 209 (2005).CrossRefGoogle Scholar
  18. (18).
    P. Çamurlu, RSC Advances, 4, 55832 (2014).CrossRefGoogle Scholar
  19. (19).
    N. Alizadeh and A. Akbarinejad, J. Mater. Chem. C, 3, 9910 (2015).CrossRefGoogle Scholar
  20. (20).
    C. P. Kuo, C. N. Chuang, C. L. Chang, M. K. Leung, H. Y. Lian, and K. C. W. Wu, J. Mater. Chem. C, 1, 2121 (2013).CrossRefGoogle Scholar
  21. (21).
    M. C. Baier, J. Huber, and S. Mecking, J. Am. Chem. Soc., 131, 14267 (2009).CrossRefGoogle Scholar
  22. (22).
    J. Bouffard and T. M. Swager, Macromolecules, 41, 5559 (2008).CrossRefGoogle Scholar
  23. (23).
    Y. Lei, H. Li, W. Gao, M. Liu, J. Chen, J. Ding, X. Huang, and H. Wu, J. Mater. Chem. C, 2, 7402 (2014).CrossRefGoogle Scholar
  24. (24).
    Y. Qu, X. Zhang, Y. Wu, F. Li, and J. Hua, Polym. Chem., 5, 3396 (2014).CrossRefGoogle Scholar
  25. (25).
    H. Wang, Y. Li, Y. Chen, L. Li, T. Fang, and Z. Tang, J. Mater. Chem. C, 3, 5136 (2015).CrossRefGoogle Scholar
  26. (26).
    Y. H. Chan and P. J. Wu, Part. Part. Syst. Charact., 32, 11 (2015).CrossRefGoogle Scholar
  27. (27).
    C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, ACS Nano, 2, 2415 (2008).CrossRefGoogle Scholar
  28. (28).
    S. Dufresne, M. Bourgeaux, and W. G. Skene, J. Mater. Chem., 17, 1166 (2007).CrossRefGoogle Scholar
  29. (29).
    S. Dufresne, I. U. Roche, T. Skalski, and W. G. Skene, J. Phys. Chem. C, 114, 13106 (2010).CrossRefGoogle Scholar
  30. (30).
    S. Dufresne and W. G. Skene, J. Phys. Org. Chem., 25, 211 (2012).CrossRefGoogle Scholar
  31. (31).
    M. Sivadhayanithy, L. Ravikumar, and T. Ramachandran, J. Chil. Chem. Soc., 52, 1230 (2007).CrossRefGoogle Scholar
  32. (32).
    A. Mellouki, R. Georges, M. Herman, D. L. Snavely, and S. Leytner, Chem. Phys., 220, 311 (1997).CrossRefGoogle Scholar
  33. (33).
    A. K. A. Almeida, M. P. Monteiro, J. M. Dias, L. Omena, A. J. da Dilva, J. Tonholo, R. J. Mortimer, M. Navarro, C. Jacinto, A. S. Ribeiro, and I. N. de Oliveira, Spectrochim. Acta A, 128, 812 (2014).CrossRefGoogle Scholar
  34. (34).
    K. Colladet, M. Nicolas, L. Goris, L. Lutsen, and D. Vanderzande, Lowband gap polymers for photovoltaic applications, Thin Solid Films 451, 7 (2004).CrossRefGoogle Scholar
  35. (35).
    A. K. A. Almeida, J. M. M. Dias, A. J. C. Silva, D. P. Santos, M. Navarro, J. Tonholo, M. O. F. Goulart, and A. S. Ribeiro, Electrochim. Acta, 122, 50 (2014).CrossRefGoogle Scholar
  36. (36).
    A. T. R. Williams, S. A. Winfield, and J. N. Miller, Analyst, 108, 1067 (1983).CrossRefGoogle Scholar
  37. (37).
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 1999.CrossRefGoogle Scholar
  38. (38).
    W. Liu, S. Lee, S. Yang, S. Bian, L. Lia, L. A. Samuelson, J. Kumar, and S. K. Tripathy, J. Macromol. Sci. Pure Appl. Chem., 38, 1355 (2001).CrossRefGoogle Scholar
  39. (39).
    G. Y. Chen, C. M. Chiang, D. Kekuda, S. C. Lan, C. W. Chu, and K. H. Wei, J. Polym. Sci. Polym. Chem., 48, 1669 (2010).CrossRefGoogle Scholar
  40. (40).
    J. Heinze, B. A. Frontana-Uribe, and S. Ludwigs, Chem. Rev., 110, 4724 (2010).CrossRefGoogle Scholar
  41. (41).
    F. Liu, H. Wang, Y. Yang, H. Xu, M. Zhang, A. Zhang, S. Bo, Z. Zhen, and L. Qiu, J. Mater. Chem. C, 2, 7785 (2014).CrossRefGoogle Scholar
  42. (42).
    M. C. S. Hou, M. Ding, and L. Gao, Macromolecules, 36, 3836 (2003).Google Scholar
  43. (43).
    I. Kaya, A. Avci, F. Kolcu, and S. Çulhaoğlu, Des. Monomers Polym., 17, 481 (2014).CrossRefGoogle Scholar
  44. (44).
    I. Kaya and S. Çulhaoğlu, Chinese J. Polym. Sci., 30, 682 (2012).CrossRefGoogle Scholar
  45. (45).
    S. Andreescu, J. Njagi, C. Ispas, and M. T. Ravalli, J. Environ. Monit., 11, 27 (2009).CrossRefGoogle Scholar
  46. (46).
    N. Alizadeh and A. Akbarinejad, J. Mater. Chem. C, 3, 9910 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • İsmet Kaya
    • 1
    Email author
  • Feyza Kolcu
    • 1
    • 2
  • Gizem Tasvir Arıcı
    • 1
  • Ezgi Çölekoğlu
    • 1
  1. 1.Çanakkale Onsekiz Mart University, Department of Chemistry, Polymer Synthesis and Analysis LaboratoryÇanakkaleTurkey
  2. 2.Çanakkale Onsekiz Mart University, Lapseki Vocational School, Department of Chemistry and Chemical Processing TechnologiesÇanakkaleTurkey

Personalised recommendations