Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1265–1272 | Cite as

A Facile Approach towards Fabrication of Electrospun Nanofibrous Mats based Multicompartment Wound Dressing Fabric

  • Qi Chen
  • Tridib K. Sinha
  • Huan Li
  • Wenbo Li
  • Jin Kuk KimEmail author
Article
  • 83 Downloads

Abstract

We have designed an efficient wound dressing fabric consisting of physically attached multicompartment (three layers) electrospun nanofibrous mats. Electrospining technique enables abundant porosity and large surface area into the fabric, ensuring enhanced water absorption and cell respiration purposes. Blend of water insoluble, biocompatible, antifungal, bactericidal, and glutinous chitosan with flexible polyethylene oxide (PEO) and herbomettalic mica has been used as the inner layer. Oxygen permeable, tissue compatible, and flexible thermoplastic polyurethane (TPU) has been used as the outer layer. Using some facile chemical approaches, blends of natural polysaccharide pullulan/polyvinyl alcohol (PVA), and in situ polymerized poly (acrylic acid-co-acrylamide)/PVA have been synthesized to fabricate the superabsorbent polymeric materials (SPM) based middle layers of the No. 1 and No. 2 dressings, respectively. The blend ratio, solution viscosity, and electrospinning conditions (i.e., voltage, injection rate, tip-to-collector distance, etc.) have been optimized to prepare each layers of the desired fabrics. Scanning electron microscope (SEM) images, water uptake measurements, and mechanical and thermal properties have been considered to characterize the fabric properties. Because of the more polar functional groups (i.e., -COOH, -CONH2, and -OH) and more crosslinking within the middle layer by glutaraldehyde, No. 2 fabric shows excellent mechanical property (i.e., tensile strength of > 11 MPa), faster (110 seconds) and higher (95%) fluid absorption efficacy, and better reusability (only 16% of water retention after drying for 7 days at room temperature) than No. 1 fabric. No. 1 fabric, in contrast, mainly consisting of H-bonding among the polymers having only -OH functional group, shows < 10 MPa of tensile strength, 75% fluid absorption within 150 seconds and poor reusability (27% of water retention).

Keywords

wound dressing superabsorbent polymer TPU chitosan water absorption electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. Huber, G. Tegl, A. Mensah, B. Beer, M. Baumann, N. Borth, and G. M. Guebitz, ACS Appl. Mater. Interfaces, 9, 15307 (2017).CrossRefGoogle Scholar
  2. (2).
    B. V. Worley, R. J. Soto, P. C. Kinsley, and M. H. Schoenfisch, ACS Biomater. Sci. Eng., 2, 426 (2016).CrossRefGoogle Scholar
  3. (3).
    E. A. Kamoun, E. R. S. Kenawy, and X. Chen, J. Adv. Res., 8, 217 (2017).CrossRefGoogle Scholar
  4. (4).
    I. Bano, M. Arshad, T. Yasin, M. A. Ghauri, and M. Younus, Int. J. Biol. Macromol., 102, 380 (2017).CrossRefGoogle Scholar
  5. (5).
    A. R. Unnithan, A. R. Sasikala, C. H. Park, and C. S. Kim, in Polyurethane Polymers, S. Thomas, J. Datta, J. T. Haponiuk, and A. Reghunadhan, Eds., Elsevier, New York, 2017, Chap. 9, pp. 233–246.Google Scholar
  6. (6).
    S. P. Miguel, D. R. Figueira, D. Simões, M. P. Ribeiro, P. Coutinho, P. Ferreira, and I. J. Correia, Colloids Surf. B, 169, 60 (2018).CrossRefGoogle Scholar
  7. (7).
    E. Caló, L. Ballamy, and V. V. Khutoryanskiy, Hydrogels in Wound Management in Hydrogels: Design, Synthesis and Application in Drug Delivery and Regenerative Medicine, CRC Press, UK, 2018.Google Scholar
  8. (8).
    W. Xu, Q. Song, J. F. Xu, M. J. Serpe, and X. Zhang, ACS Appl. Mater. Interfaces, 9, 11368 (2017).CrossRefGoogle Scholar
  9. (9).
    Y. Xiao, L. A. Reis, N. Feric, E. J. Knee, J. Gu, S. Cao, and M. Radisic, Proc. Natl. Acad. Sci. U.S.A., 113, E5792 (2016).CrossRefGoogle Scholar
  10. (10).
    M. S. Brown, B. Ashley, and A. Koh, Front. Bioeng. Biotechnol., 6, 47 (2018).CrossRefGoogle Scholar
  11. (11).
    E. M. Ahmed, J. Adv. Res., 6, 105 (2015).CrossRefGoogle Scholar
  12. (12).
    M. Pakravan, M. C. Heuzey, and A. Ajji, Biomacromolecules, 13, 412 (2012).CrossRefGoogle Scholar
  13. (13).
    J. Lin, C. Li, Y. Zhao, J. Hu, and L. M. Zhang, ACS Appl. Mater. Interfaces, 4, 1050 (2012).CrossRefGoogle Scholar
  14. (14).
    A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. F. Stevens, J. Biomed. Mater. Res., Part B, 69, 216 (2004).CrossRefGoogle Scholar
  15. (15).
    Q. Chen, Z. X. Xin, P. Saha, and J. K. Kim, J. Polym. Eng., 37, 461 (2017).CrossRefGoogle Scholar
  16. (16).
    W. Xu, Z. Wang, Y. Liu, L. Wang, Z. Jiang, T. Li, W. Zhang, and Y. Liang, Carbohydr. Polym., 192, 240 (2018).CrossRefGoogle Scholar
  17. (17).
    J. P. Chen, G. Y. Chang, and J. K. Chen, Colloids Surf. A, 313, 183 (2008).CrossRefGoogle Scholar
  18. (18).
    M. Ignatova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 9, 102 (2009).CrossRefGoogle Scholar
  19. (19).
    S. Lu, W. Gao, and H. Y. Gu, Burns, 34, 623 (2008).CrossRefGoogle Scholar
  20. (20).
    M. N. R. Kumar, React. Funct. Polym., 46, 1 (2000).CrossRefGoogle Scholar
  21. (21).
    T. T. Yuan, A. M. D. Foushee, M. C. Johnson, A. R. Jockheck–Clark, and J. M. Stahl, Nanoscale Res. Lett., 13, 88 (2018).CrossRefGoogle Scholar
  22. (22).
    A. Wijenayake, A. Pitawala, R. Bandara, and C. Abayasekara, J. Ethnopharmacol., 155, 1001 (2014).CrossRefGoogle Scholar
  23. (23).
    A. U. Wijenayake, C. L. Abayasekara, H. M. T. G. A. Pitawala, and B. M. R. Bandara, BMC Complement. Altern. Med., 16, 365 (2016).CrossRefGoogle Scholar
  24. (24).
    P. M. Claesson and B. W. Ninham, Langmuir, 8, 1406 (1992).CrossRefGoogle Scholar
  25. (25).
    F. Kong, S. Wang, W. Gao, and P. Fatehi, RSC Adv., 8, 12322 (2018).CrossRefGoogle Scholar
  26. (26).
    S. Shukla and A. K. Bajpai, J. Appl. Polym. Sci., 102, 84 (2006).CrossRefGoogle Scholar
  27. (27).
    D. Ma, B. Zhu, B. Cao, J. Wang, and J. Zhang, J. Macromol. Sci., Part B: Phys., 55, 1124 (2016).CrossRefGoogle Scholar
  28. (28).
    M. J. Zohuriaan–Mehr and K. Kabiri, Iran. Polym. J., 17, 451 (2008).Google Scholar
  29. (29).
    H. Byun, B. Hong, S. Y. Nam, S. Y. Jung, J. W. Rhim, S. B. Lee, and G. Y. Moon, Macromol. Res., 16, 189 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Qi Chen
    • 1
  • Tridib K. Sinha
    • 2
  • Huan Li
    • 2
  • Wenbo Li
    • 1
  • Jin Kuk Kim
    • 2
    Email author
  1. 1.Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and TechnologyQingdao University of Science and TechnologyQingdaoChina
  2. 2.Department of Materials Engineering and Convergence TechnologyGyeongsang National UniversityJinjuKorea

Personalised recommendations