Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1200–1211 | Cite as

Purposive Assembling of Poly(3-hexylthiophene) onto Chemically Treated Multi-Wall Carbon Nanotube versus Reduced Graphene Oxide

  • Somaiyeh Charoughchi
  • Samira AgbolaghiEmail author
  • Raana Sarvari
  • Sahar Aghapour
Article
  • 84 Downloads

Abstract

Surfaces of multi-walled carbon nanotubes (CNTs) and reduced graphene oxide (rGO) nanosheets were chemically modified to design distinct donor-acceptor nano-hybrids having different morphologies and orientations. In unmodified CNTs and their derivatives functionalized with 2-hydroxymethyl thiophene (CNT-f-COOTh) and grafted with poly(3-dodecylthiophene) (CNT-g-PDDT), double-fibrillar, shishkebab, and stem-leaf nanostructures were decorated. Furthermore, rGO nanosheets functionalized with 2-thiophene acetic acid (rGO-f-TAA) and grafted with poly(3-dodecylthiophene) (rGO-g-PDDT) were prepared to study differences in CNT and rGO supramolecules. Three types of orientations subsuming face-on, edge-on, and flat-on were detected in nano-hybrids based on CNT and rGO. Morphology (fibrillar) and orientation (face-on) of poly(3-hexylthiophene) (P3HT) assemblies were similar onto unmodified CNT and rGO nanostructures. Although patternings of P3HT chains were completely different onto functionalized CNT and rGO (shish-kebab versus nanocrystal decorated nanosheets), edge-on orientation was detected in CNT-f-COOTh/P3HT and rGO-f-TAA/P3HT nano-hybrids. In CNT-g-PDDT/P3HT and rGO-g-PDDT/P3HT systems, P3HT chains were extendedly assembled onto grafted carbonic materials; however, their different natures reflected stem-leaf and patched-like configurations, respectively. For unmodified, functionalized, and grafted CNT and rGO patterned with P3HT chains, a photoluminescence quenching was detected for a donor-acceptor nature. Owing to flat-on oriented P3HTs, the best photoluminescence quenching, thereby the best donating-accepting features were detected for CNT-g-PDDT/P3HT and rGO-g-PDDT/P3HT supramolecules.

Keywords

CNT rGO donor-acceptor nano-hybrid morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7021_MOESM1_ESM.pdf (336 kb)
Supporting Information

References

  1. (1).
    A. A. Kausar, Polym. Plast. Technol. Eng., 54, 741 (2015).CrossRefGoogle Scholar
  2. (2).
    M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science, 339, 535 (2013).CrossRefGoogle Scholar
  3. (3).
    E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science, 307, 1942 (2005).CrossRefGoogle Scholar
  4. (4).
    S. Sahoo, S. Husale, S. Karna, S. K. Nayak, and P. M. Ajayan, J. Am. Chem. Soc., 133, 4005 (2011).CrossRefGoogle Scholar
  5. (5).
    X. J. Wang, C. Wang, L. Cheng, S. T. Lee, and Z. Liu, J. Am. Chem. Soc., 134, 7414 (2012).CrossRefGoogle Scholar
  6. (6).
    W. Qiu, Q. Li, Z. K. Lei, Q. H. Qin, W. L. Deng, and Y. L. Kang, Carbon, 53, 161 (2013).CrossRefGoogle Scholar
  7. (7).
    R. Andrews, D. Jacques, D. Qian, and T. Rantell, Acc. Chem. Res., 35, 1008 (2002).CrossRefGoogle Scholar
  8. (8).
    C.-C. Hsiao, T. S. Lin, L. Y. Cheng, C. C. M. Ma, and A. C.-M. Yang, Macromolecules, 38, 4811 (2005).CrossRefGoogle Scholar
  9. (9).
    C. W. Lin, L. C. Huang, and A. C. M. Yang, Macromolecules, 41, 4978 (2008).CrossRefGoogle Scholar
  10. (10).
    C. W. Lin and A. C. M. Yang, Macromolecules, 43, 6811 (2010).CrossRefGoogle Scholar
  11. (11).
    M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, Mater. Chem. Phys., 112, 779 (2008).CrossRefGoogle Scholar
  12. (12).
    J. Robertson, Mater. Today, 7, 46 (2015).CrossRefGoogle Scholar
  13. (13).
    H. W. Gu and T. M. Swager, Adv. Mater., 20, 4433 (2008).CrossRefGoogle Scholar
  14. (14).
    R. Allen, L. J. Pan, G. G. Fuller, and Z. N. Bao, ACS Appl. Mater. Interfaces, 6, 9966 (2014).CrossRefGoogle Scholar
  15. (15).
    X. Liu, J. Ly, S. Han, D. Zhang, and A. Requicha, Adv. Mater., 17, 2727 (2005).CrossRefGoogle Scholar
  16. (16).
    I. A. Tchmutin, A. T. Ponomarenko, E. P. Krinichnaya, G. I. Kozub, and O. N. Efimov, Carbon, 41, 1391 (2003).CrossRefGoogle Scholar
  17. (17).
    R. G. S. Goh, N. Motta, J. M. Bell, and E. R. Waclawik, Appl. Phys. Lett., 88, 053101 (2006).CrossRefGoogle Scholar
  18. (18).
    J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, and G. C. Walker, J. Am. Chem. Soc., 124, 9034 (2002).CrossRefGoogle Scholar
  19. (19).
    W. Hou, N.-J. Zhao, D. Meng, J. Tang, Y. Zeng, Y. Wu, Y. Weng, C. Cheng, X. Xu, Y. Li, J.-P. Zhang, Y. Huang, and C. Bielawaki, ACS Nano, 10, 5189 (2016).CrossRefGoogle Scholar
  20. (20).
    J. H. Liu, J. H. Zou, and L. Zhai, Macromol. Rapid Commun., 30, 1387 (2009).CrossRefGoogle Scholar
  21. (21).
    J. H. Liu, J. Moo-Young, M. McInnis, M. A. Pasquinelli, and L. Zhai, Macromolecules, 47, 705 (2014).CrossRefGoogle Scholar
  22. (22).
    R. D. K. Misra, D. Depan, V. S. A. Challa, and J. S. Shah, Phys. Chem. Chem. Phys., 16, 19122 (2014).CrossRefGoogle Scholar
  23. (23).
    Y. Dias and R. Yerushalmi-Rozen, Polymer, 54, 6399 (2013).CrossRefGoogle Scholar
  24. (24).
    F. Boon, S. Desbief, L. Cutaia, O. Douheret, A. Minoia, B. Ruelle, S. Clement, O. Coulembier, J. Cornil, P. Dubois, and R. Lazzaroni, Macromol. Rapid Commun., 31, 1427 (2010).CrossRefGoogle Scholar
  25. (25).
    V. S. A. Challa, K. C. Nune, and R. D. K. Misra, Mater. Technol., 31, 477 (2016).CrossRefGoogle Scholar
  26. (26).
    H. S. Park, B. G. Choi, W. H. Hong, and S.-Y. Jang, J. Phys. Chem. C, 116, 7962 (2012).CrossRefGoogle Scholar
  27. (27).
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).CrossRefGoogle Scholar
  28. (28).
    D. H. Kim, H. S. Lee, H. J. Shin, Y. S. Bae, K. H. Lee, S. W. Kim, D. Choi, and J. Y. Choi, Soft Matter, 9, 5355 (2013).CrossRefGoogle Scholar
  29. (29).
    Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).CrossRefGoogle Scholar
  30. (30).
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).CrossRefGoogle Scholar
  31. (31).
    S. Pang, Y. Hernandez, X. Feng, and K. Mullen, Adv. Mater., 23, 2779 (2011).CrossRefGoogle Scholar
  32. (32).
    L. G. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano, 4, 2865 (2010).CrossRefGoogle Scholar
  33. (33).
    W. Liu, B. L. Jackson, J. Zhu, C.-Q. Miao, C.-H. Chung, Y.-J. Park, K. Sun, J. Woo, and Y.-H. Xie, ACS Nano, 4, 3927 (2010).CrossRefGoogle Scholar
  34. (34).
    S. J. Kang, B. Kim, K. S. Kim, Y. Zhao, Z. Chen, G. H. Lee, J. Hone, P. Kim, and C. Nuckolls, Adv. Mater., 23, 3531 (2011).CrossRefGoogle Scholar
  35. (35).
    W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, and Y. H. Lee, Nano Lett., 11, 1344 (2011).CrossRefGoogle Scholar
  36. (36).
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature, 457, 706 (2009).CrossRefGoogle Scholar
  37. (37).
    D. Choi, M.-Y. Choi, W. M. Choi, H. J. Shin, H. G. Park, J. B. Park, S. M. Yoon, S. J. Chae, Y. H. Lee, J.-Y. Choi, S. W. Kim, S. Y. Lee, and J. M. Kim, Adv. Mater., 22, 2187 (2010).CrossRefGoogle Scholar
  38. (38).
    V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S. C. B. Mannsfeld, M. F. Toney, and D. R. Barbero, Adv. Func. Mater., 25, 664 (2015).CrossRefGoogle Scholar
  39. (39).
    G. Huang, Ch. Hou, Y. Shao, H. Wang, Q. Zhang, Y. Li, and M. Zhu, Sci. Rep., 4, 4248 (2014).CrossRefGoogle Scholar
  40. (40).
    R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, Science, 343, 752 (2014).CrossRefGoogle Scholar
  41. (41).
    L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science, 342, 614 (2013).CrossRefGoogle Scholar
  42. (42).
    A. Chunder, J. Liu, and L. Zhai, Macromol. Rapid Commun., 31, 380 (2010).CrossRefGoogle Scholar
  43. (43).
    X. Zhou, Z. Chen, Y. Qu, Q. Suab, and X. Yang, RSC Adv., 3, 4254 (2013).CrossRefGoogle Scholar
  44. (44).
    I. V. Lightcap and P. V. Kamat, Acc. Chem. Res., 46, 2235 (2013).CrossRefGoogle Scholar
  45. (45).
    S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, and M. Chhowalla, ACS Nano, 4, 3169 (2010).CrossRefGoogle Scholar
  46. (46).
    Y. Gao, H. L. Yip, K. S. Chen, K. M. O’Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A. K. Y. Jen, Adv. Mater., 23, 1903 (2011).CrossRefGoogle Scholar
  47. (47).
    X. Liu, H. Kim, and L. J. Guo, Org. Electron., 14, 591 (2013).CrossRefGoogle Scholar
  48. (48).
    Q. Wang, X. Cui, J. Chen, X. Zheng, C. Liu, T. Xue, H. Wang, Z. Jin, L. Qiao, and W. Zheng, RSC Adv., 2, 6245 (2012).CrossRefGoogle Scholar
  49. (49).
    F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater., 6, 652 (2007).CrossRefGoogle Scholar
  50. (50).
    B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S. Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, and W. H. Hong, ACS Nano, 4, 2910 (2010).CrossRefGoogle Scholar
  51. (51).
    L. Huang, Y. Huang, J. J. Liang, X. J. Wan, and Y. S. Chen, Nano Res., 4, 675 (2011).CrossRefGoogle Scholar
  52. (52).
    B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M. D. Giles, and M. A. Stettlera, Appl. Phys. Lett., 88, 142102 (2006).CrossRefGoogle Scholar
  53. (53).
    Z. F. Liu, Q. Liu, Y. Huang, Y. F. Ma, S. G. Yin, X. Y. Zhang, W. Sun, and Y. Chen, Adv. Mater., 20, 3924 (2008).CrossRefGoogle Scholar
  54. (54).
    Z. Yang and H. Lu, Appl. Polym. Sci., 128, 802 (2013).CrossRefGoogle Scholar
  55. (55).
    X. Zhou and X. Yang, Carbon, 50, 4566 (2012).CrossRefGoogle Scholar
  56. (56).
    S. Agbolaghi, S. Abbaspoor, B. Massoumi, R. Sarvari, S. Sattari, S. Aghapour, and S. Charoughchi, Macromol. Chem. Phys., 219, 1700484 (2017).CrossRefGoogle Scholar
  57. (57).
    S. Abbaspoor, S. Agbolaghi, M. Mahmoudi, B. Massoumi, R. Sarvari, Y. Beygi-Khosrowshahi, and S. Sattari, Org. Electron., 52, 243 (2017).CrossRefGoogle Scholar
  58. (58).
    S. Abbaspoor, S. Ebrahimi, B. Massoumi, S. Abbaspoor, R. Sarvari, and F. Abbasi, J. Polym. Sci., Part B: Polym. Phys., 55, 1877 (2017).CrossRefGoogle Scholar
  59. (59).
    S. Agbolaghi, F. Abbasi, and H. Gheybi, Eur. Polym. J., 84, 465 (2016).CrossRefGoogle Scholar
  60. (60).
    S. Agbolaghi, M. Nazari, S. Zenoozi, and F. Abbasi, J. Mater. Sci., Mater. Electron., 28, 10611 (2017).CrossRefGoogle Scholar
  61. (61).
    S. Agbolaghi, F. Abbasi, S. Zenoozi, and M. Nazari, Mater. Sci. Semicond. Process., 63, 285 (2017).CrossRefGoogle Scholar
  62. (62).
    S. Zenoozi, S. Agbolaghi, H. Gheybi, and F. Abbasi, Macromol. Chem. Phys., 218, 1700067 (2017).CrossRefGoogle Scholar
  63. (63).
    J. Y. Kim and C. D. Frisbie, J. Phys. Chem. C, 112, 17726 (2008).CrossRefGoogle Scholar
  64. (64).
    K. Rahimi, I. Botiz, N. Stingelin, N. Kayunkid, M. Sommer, F. P. Koch, H. Nguyen, O. Coulembier, P. Dubois, M. Brinkmann, and G. Reiter, Angew. Chem. Int. Ed. Engl., 51, 11131 (2012).CrossRefGoogle Scholar
  65. (65).
    C. S. Lee and M. D. Dadmun, Polymer, 55, 4 (2014).CrossRefGoogle Scholar
  66. (66).
    O. F. Pascui, R. Lohwasser, M. Sommer, M. Thelakkat, T. Thurn-Albrecht, and K. Saalwächter, Macromolecules, 43, 9401 (2010).CrossRefGoogle Scholar
  67. (67).
    S. Zenoozi, S. Agbolaghi, M. Nazari, and F. Abbasi, Mater. Sci. Semicond. Process., 64, 85 (2017).CrossRefGoogle Scholar
  68. (68).
    N. C. Cates, R. Gysel, Z. Beiley, C. E. Miller, M. F. Toney, M. Heeney, I. McCulloch, and M. D. McGehee, Nano Lett., 9, 4153 (2009).CrossRefGoogle Scholar
  69. (69).
    K. Tremel and S. Ludwigs, Adv. Polym. Sci., 265, 39 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Somaiyeh Charoughchi
    • 1
  • Samira Agbolaghi
    • 2
    Email author
  • Raana Sarvari
    • 3
  • Sahar Aghapour
    • 1
  1. 1.Institute of Polymeric Materials and Faculty of Polymer EngineeringSahand University of TechnologyTabrizIran
  2. 2.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations