Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1225–1232 | Cite as

Surface Modification of Poly(vinylidene fluoride) Ultrafiltration Membranes with Chitosan for Anti-Fouling and Antibacterial Performance

  • Weiwei Xia
  • Manman Xie
  • Xia FengEmail author
  • Li Chen
  • Yiping ZhaoEmail author
Article
  • 67 Downloads

Abstract

A graft copolymer (PVDF-g-PAA) having poly(vinylidene fluoride) (PVDF) backbones and poly(acrylic acid) (PAA) side chains was synthesized using the radical polymerization method and the PVDF-g-PAA copolymer membrane was prepared via immersion phase inversion. Then the chitosan was immobilized on the surface of the copolymer membrane by covalent bond. The morphology, surface chemical structure and performance of the modified membranes were characterized by scanning electron microscopy, attenuated total reflection-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle, permeation measurement, antifouling and antibacterial tests. The results showed that the contact angle of the modified membrane decreased, and the water flux increased from 37.74 Lm-2h-1 for pure PVDF membrane to 119.43 Lm-2h-1, which indicated that the modified membrane had higher hydrophilicity than unmodified membrane. The modified membrane has better antifouling properties than pure PVDF membrane due to the increase of surface hydrophilicity, and the highest water flux recovery ratio can achieve 93.2%. Furthermore, the modified membrane showed good antibacterial activity (E. coli), and the maximum antibacterial ratio of the modified membrane was 89.6%.

Keywords

polyvinylidene fluoride hydrophilicity antifouling properties antibacterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. D. Kang and Y. M. Cao, J. Membr. Sci., 463, 145 (2014).CrossRefGoogle Scholar
  2. (2).
    Y. Zhu and Z. C. Zhang, Macromol. Res., 22, 1275 (2014).CrossRefGoogle Scholar
  3. (3).
    F. Liu, N. A. Hashim, Y. T. Liu, M. R. M. Abed, and K. Li, J. Membr. Sci., 375, 1 (2011).CrossRefGoogle Scholar
  4. (4).
    B. J. Cha and J. M. Yang, Macromol. Res., 14, 596 (2006).CrossRefGoogle Scholar
  5. (5).
    S. Liang, G. G. Qi, K. Xiao, J. Y. Sun, E. P. Giannelis, X. Huang, and M. Elimelech, J. Membr. Sci., 463, 94 (2014).CrossRefGoogle Scholar
  6. (6).
    J. Lee, B. Park, J. Kim, and S. B. Park, Macromol. Res., 23, 291 (2015).CrossRefGoogle Scholar
  7. (7).
    M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Nature, 452, 301 (2008).CrossRefGoogle Scholar
  8. (8).
    D. Rana and T. Matsuura, Chem. Rev., 110, 2448 (2010).CrossRefGoogle Scholar
  9. (9).
    C. Cheng, S. Li, W. F. Zhao, Q. Wei, S. Q. Nie, S. D. Sun, and C. S. Zhao, J. Membr. Sci., 417-418, 228 (2012).CrossRefGoogle Scholar
  10. (10).
    T. H. Kim, K. Y. Jee, and T. L. Yong, Macromol. Res., 23, 592 (2015).CrossRefGoogle Scholar
  11. (11).
    Y. F. Li, Y. L. Su, X. T. Zhao, X. He, R. N. Zhang, J. J. Zhao, X. C. Fan, and Z. Y. Jiang, ACS Appl. Mater. Interfaces, 6, 5548 (2014).CrossRefGoogle Scholar
  12. (12).
    M. G. Zhang, Q. T. Nguyen, and Z. H. Ping, J. Membr. Sci., 327, 78 (2009).CrossRefGoogle Scholar
  13. (13).
    Y. Chang, C. Y. Ko, Y. J. Shih, D. Quémener, A. Deratani, T. C. Wei, D. M. Wang, and J. Y. Lai, J. Membr. Sci., 345, 160 (2009).CrossRefGoogle Scholar
  14. (14).
    Z. K. Xu, J. L. Wang, L. Q. Shen, D. F. Men, and Y. Y. Xu, J. Membr. Sci., 196, 221 (2002).CrossRefGoogle Scholar
  15. (15).
    S. P. Nunes and K. V. Peinemann, J. Membr. Sci., 73, 25 (1992).CrossRefGoogle Scholar
  16. (16).
    N. N. Li, C. F. Xiao, S. L. An, and X. Y. Hu, Desalination, 250, 530 (2010).CrossRefGoogle Scholar
  17. (17).
    Q. Y. Bi, Q. Li, Y. Tian, Y. K. Lin, and X. L. Wang, J. Appl. Polym. Sci., 127, 394 (2013).CrossRefGoogle Scholar
  18. (18).
    G. L. Zhao and W. N. Chen, React. Funct. Polym., 97, 19 (2015).CrossRefGoogle Scholar
  19. (19).
    J. Liu, X. Shen, Y. P. Zhao, and L. Chen, Ind. Eng. Chem. Res., 52, 18392 (2013).CrossRefGoogle Scholar
  20. (20).
    Y. Li, S. Huang, S. Zhou, and A. G. Fane, J. Membr. Sci., 556, 154 (2018).CrossRefGoogle Scholar
  21. (21).
    C. K. S. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci., 34, 641 (2009).CrossRefGoogle Scholar
  22. (22).
    Z. G. Zhao, J. F. Zheng, M. J. Wang, H. Y. Zhang, and C. C. Han, J. Membr. Sci., 394-395, 209 (2012).CrossRefGoogle Scholar
  23. (23).
    S. Boributh, A. Chanachai, and R. Jiraratananon, J. Membr. Sci., 342, 97 (2009).CrossRefGoogle Scholar
  24. (24).
    S. Zinadini, A. A. Zinatizadeh, and M. Rahimi, Desalination, 349, 145 (2014).CrossRefGoogle Scholar
  25. (25).
    Z. Rahimi, A. A. Zinatizadeh, and S. Zinadini, J. Ind. Eng. Chem., 38, 103 (2016).CrossRefGoogle Scholar
  26. (26).
    C. N. B. Elizalde, S. Al-Gharabli, J. Kujawa, M. Mavukkandy, S. W. Hasan, and H. A. Arafat, Sep. Purif. Technol., 190, 68 (2018).CrossRefGoogle Scholar
  27. (27).
    K. Ekambaram and M. Doraisamy, Carbohydr. Polym., 173, 431 (2017).CrossRefGoogle Scholar
  28. (28).
    F. F. Ghiggi, L. D. Pollo, and N. S. M. Cardozo, Eur. Polym. J., 92, 61 (2017).CrossRefGoogle Scholar
  29. (29).
    X. Shen, X. Yin, Y. P. Zhao, and L. Chen, Colloid Polym. Sci., 293, 1205 (2015).CrossRefGoogle Scholar
  30. (30).
    X. Feng, Y. F. Guo, X. Chen, Y. P. Zhao, J. Li, X. He, and L. Chen, Desalination, 290, 89 (2012).CrossRefGoogle Scholar
  31. (31).
    K. W. Kang, W. H. Chi, and T. S. Hwang, Macromol. Res., 23, 1126 (2015).CrossRefGoogle Scholar
  32. (32).
    F. Perreault, M. E. Tousley, and M. Elimelech, Environ. Sci. Technol. Lett., 1, 71 (2014).CrossRefGoogle Scholar
  33. (33).
    M. Amirilargani, A. Sabetghadam, and T. Mohammadi, Polym. Adv. Technol., 23, 398 (2012).CrossRefGoogle Scholar
  34. (34).
    V. Vatanpour, S. S. Madaeni, L. Rajabi, S. Zinadini, and A. A. Derakhshan, J. Membr. Sci., 401-402, 132 (2012).CrossRefGoogle Scholar
  35. (35).
    J. H. Jiang, L. P. Zhu, L. J. Zhu, H. T. Zhang, B. K. Zhu, and Y. Y. Xu, ACS Appl. Mater. Interfaces, 5, 12895 (2013).CrossRefGoogle Scholar
  36. (36).
    L. Yu, Y. T. Zhang, B. Zhang, J. D. Liu, H. Q. Zhang, and C. H. Song, J. Membr. Sci., 447, 452 (2013).CrossRefGoogle Scholar
  37. (37).
    J. Z. Yu, L. P. Zhu, B. K. Zhu, and Y. Y. Xu, J. Membr. Sci., 366, 176 (2011).CrossRefGoogle Scholar
  38. (38).
    J. M. Pelet and D. Putnam, Bioconjug. Chem., 22, 329 (2011).CrossRefGoogle Scholar
  39. (39).
    S. A. Pervin, A. A. Prabu, and K. J. Kim, Macromol. Res., 23, 86 (2015).CrossRefGoogle Scholar
  40. (40).
    S. Liang, Y. Kang, A. Tiraferri, E. P. Giannelis, X. Huang, and M. Elimelech, ACS Appl. Mater. Interfaces, 5, 6694 (2013).CrossRefGoogle Scholar
  41. (41).
    S. I. Cheong, B. Kim, H. Lee, and W. R. Ji, Macromol. Res., 21, 629 (2013).CrossRefGoogle Scholar
  42. (42).
    K. L. Bo, H. L. Sun, S. P. Ji, and O. K. Sang, Macromol. Res., 17, 666 (2009).CrossRefGoogle Scholar
  43. (43).
    M. R. Moghareh Abed, S. C. Kumbharkar, A. M. Groth, and K. Li, Sep. Purif. Technol., 106, 47 (2013).CrossRefGoogle Scholar
  44. (44).
    D. Lee and M. F. Rubner, Nano Lett., 6, 2305 (2006).CrossRefGoogle Scholar
  45. (45).
    P. P. Wang, J. Ma, Z. H. Wang, F. M. Shi, and Q. L. Liu, Langmuir, 28, 4776 (2012).CrossRefGoogle Scholar
  46. (46).
    X. Shen, Y. P. Zhao, and L. Chen, Chem. Eng. Technol., 38, 859 (2015).CrossRefGoogle Scholar
  47. (47).
    Z. Q. Dong, X. H. Ma, and Z. L. Xu, RSC Adv., 5, 67962 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinP. R. China
  2. 2.School of Materials Science and EngineeringTianjin University of TechnologyTianjinP. R. China

Personalised recommendations