Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1233–1240 | Cite as

Modulation of the Self-Assembly of Collagen by Phytic Acid: An In Vitro Study

  • Xiao Tu
  • Xincheng Chen
  • Ying Peng
  • Jie Nan
  • Benmei Wei
  • Lang He
  • Chengzhi Xu
  • Yuling Xu
  • Dong Xie
  • Juntao ZhangEmail author
  • Haibo WangEmail author
Article
  • 79 Downloads

Abstract

Phytic acid, containing a myoinositol ring coupled with six phosphate groups, can react with the amino groups of collagen to regulate their self-assembly behavior. The aim of this research is to evaluate the effects of phytic acid on the selfassembly behavior of collagen, the structures and properties of the resulting fibrils and hydrogels. Turbidity and chloramine T assay suggested that phytic acid could improve the self-assembly kinetics and degree of collagen, and the optimal ratio of phytic acid/collagen was 1/1 (w/w). Scanning electron microscopy (SEM) analysis indicated that co-fibrils of collagen with phytic acid are more slender than that of pure collagen, and transmission electron microscopy (TEM) reveals that the characteristic D-periodicity of collagen fibrils is not affected by phytic acid. Besides, differential scanning calorimetry (DSC) and rheology revealed that the thermal stability of collagen fibrils and the viscoelasticity of collagen hydrogels could be improved by phytic acid and the optimal ratio of phytic acid/collagen is 1/1 (w/w).

Keywords

collagen phytic acid self-assembly kinetics structure property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    F. Pati, B. Adhikari, and S. Dhara, Bioresour. Technol., 101, 3737 (2010).CrossRefGoogle Scholar
  2. (2).
    W. Traub and K. A. Piez, Adv. Protein Chem., 25, 243 (1971).CrossRefGoogle Scholar
  3. (3).
    J. E. Eastoe, Biochem. J., 61, 589 (1955).CrossRefGoogle Scholar
  4. (4).
    J. Zhang, M. Zou, M. Zhang, B. Wei, C. Xu, D. Xie, and H. Wang, Food Biophys., 11, 380 (2016).CrossRefGoogle Scholar
  5. (5).
    S. J. Lee, J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 2891 (2008).CrossRefGoogle Scholar
  6. (6).
    O. Akturk, A. Tezcaner, H. Bilgili, M. S. Deveci, M. R. Gecit, and D. Keskin, J. Biosci. Bioeng., 112, 279 (2011).CrossRefGoogle Scholar
  7. (7).
    C. Chung and J. A. Burdick, Adv. Drug Deliv. Rev., 60, 243 (2008).CrossRefGoogle Scholar
  8. (8).
    S. H. Baik, J. H. Kim, H. H. Cho, S. Park, Y. S. Kim, and H. Suh, J. Surg. Res., 164, 221 (2010).CrossRefGoogle Scholar
  9. (9).
    P. Fratzl and R. Weinkamer, Prog. Mater. Sci., 52, 1263 (2007).CrossRefGoogle Scholar
  10. (10).
    P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Bernstorff, J. Struct. Biol., 122, 119 (1998).CrossRefGoogle Scholar
  11. (11).
    A. K. Lynn, I. V. Yannas, and W. Bonfield, J. Biomed. Mater. Res. B, 71, 343 (2004).CrossRefGoogle Scholar
  12. (12).
    P. Fratzl, Collagen: Structure and Mechanics, Springer Science + Business Media, New York, 2008.CrossRefGoogle Scholar
  13. (13).
    M. Fang, E. L. Goldstein, E. K. Matich, B. G. Orr, and M. M. Banaszak, Langmuir, 29, 2330 (2013).CrossRefGoogle Scholar
  14. (14).
    G. D. Pins and F. H. Silver, Mater. Sci. Eng. C-Mater., 3, 101 (1995).CrossRefGoogle Scholar
  15. (15).
    J. Zhang, B. Wei, L. He, C. Xu, D. Xie, K.-W. Paik, and H. Wang, Macromol. Res., 25, 1105 (2017)CrossRefGoogle Scholar
  16. (16).
    M. Zhang, K. Wu, and G. Li, Int. J. Biol. Macromol., 49, 847 (2011).CrossRefGoogle Scholar
  17. (17).
    Z. Zhai, H. Wang, B. Wei, P. Yu, C. Xu, L. He, J. Zhang, and Y. Xu, Macromol. Res., 26, 609 (2018).CrossRefGoogle Scholar
  18. (18).
    J. E. Gough, C. A. Scotchford, and S. Downes, J. Biomed. Mater. Res., Part A, 61, 121 (2002).CrossRefGoogle Scholar
  19. (19).
    C. I. Febles, A. Arias, A. Hardisson, C. Rodríguez-Alvarez, and A. Sierra, J. Cereal Sci., 36, 19 (2002).CrossRefGoogle Scholar
  20. (20).
    R. Ravichandran, V. Seitz, J. R. Venugopal, R. Sridhar, S. Sundarrajan, S. Mukherjee, E. Wintermantel, and S. Ramakrishna, Macromol. Biosci., 13, 366 (2013).CrossRefGoogle Scholar
  21. (21).
    K. Dost and O. Tokul, Anal. Chim. Acta, 558, 22 (2006).CrossRefGoogle Scholar
  22. (22).
    E. Graf, K. L. Empson, and J. W. Eaton, J. Biol. Chem., 262, 11647 (1987).Google Scholar
  23. (23).
    X. Wang, K. Wen, X. Yang, L. Li, and X. Yu, J. Mater. Chem. B, 5, 8115 (2017).CrossRefGoogle Scholar
  24. (24).
    M. Yan, B. Li, X. Zhao, and S. Qin, Food Hydrocoll., 29, 199 (2012).CrossRefGoogle Scholar
  25. (25).
    I. Bae, K. Osatom, A. Yoshida, A. Yamaguchi, K. Tachibana, T. Oda, and K. Hara, Fisheries Sci., 75, 765 (2009).CrossRefGoogle Scholar
  26. (26).
    G. K. Reddy and C. S. Enwemeka, Clin. Biochem., 29, 225 (1996).CrossRefGoogle Scholar
  27. (27).
    P. Noitup, M. T. Morrissey, and W. Garnjanagoonchorn, J. Food Biochem., 30, 547 (2006).CrossRefGoogle Scholar
  28. (28).
    A. Cooper, Biochem. J., 118, 355 (1970).CrossRefGoogle Scholar
  29. (29).
    J. M. Cassel, Biopolymers, 4, 989 (1966).CrossRefGoogle Scholar
  30. (30).
    S. Leikin, D. C. Rau, and V. A. Parsegian, Nat. Struct. Biol., 2, 205 (1995).CrossRefGoogle Scholar
  31. (31).
    C. Mu, D. Li, W. Lin, Y. Ding, and G. Zhang, Biopolymers, 86, 282 (2007).CrossRefGoogle Scholar
  32. (32).
    R. Usha, S. M. Jaimohan, A. Rajaram, and A. B. Mandal, Int. J. Biol. Macromol., 47, 402 (2010).CrossRefGoogle Scholar
  33. (33).
    C. Ding, M. Zhang, H. Tian, and G. Li, Int. J. Biol. Macromol., 52, 319 (2013).CrossRefGoogle Scholar
  34. (34).
    X. Cheng, U. A. Gurkan, C. J. Dehen, M. P. Tate, H. W. Hillhouse, G. J. Simpson, and O. Akkus, Biomaterials, 29, 3278 (2008).CrossRefGoogle Scholar
  35. (35).
    Y. Li, A. Asadi, R. M. Margo, and P. D. Elliot, Mater. Sci. Eng. C-Mater, 29, 1643 (2009).CrossRefGoogle Scholar
  36. (36).
    H. Tian, C. Li, W. Liu, J. Li, and G. Li, Colloid Surface B, 105, 259 (2013).CrossRefGoogle Scholar
  37. (37).
    D. Velegol and F. Lanni, Biophys. J., 81, 1786 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Xiao Tu
    • 1
  • Xincheng Chen
    • 1
  • Ying Peng
    • 1
  • Jie Nan
    • 1
  • Benmei Wei
    • 1
  • Lang He
    • 1
  • Chengzhi Xu
    • 1
  • Yuling Xu
    • 1
  • Dong Xie
    • 1
  • Juntao Zhang
    • 1
    Email author
  • Haibo Wang
    • 1
    Email author
  1. 1.School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhan, HubeiP. R. China

Personalised recommendations