Advertisement

Transdermal Hydrogel Composed of Polyacrylic Acid Containing Propolis for Wound Healing in a Rat Model

  • Jin Kim
  • Chang-Moon Lee
Article
  • 12 Downloads

Abstract

The aim of this study was to investigate the effect of the Carbopol® hydrogel containing propolis (CHP) on wound healing in a rat model. CHP extracts inhibited nitric oxide production induced by lipopolysaccharide in RAW264.7 cells with a concentration-dependent manner. Wounds were prepared through excision to remove full-thickness skin of rats k]and then were covered with CHP. The covered wounds showed significantly rapid contraction and closure. Histological tissue examination indicated that CHP induced advanced granulation tissue formation and re-epithelialization in the wound. These results indicate that CHP may be helpful for the promotion of wound healing.

Keywords

propolis hydrogel wound healing carbopol polyacrylic acid transdermal gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Silva-Carvalho, F. Baltazar, and C. Almeida-Aguiar, Evid. Based Complement. Alternat. Med., 2015, 206439 (2015).CrossRefGoogle Scholar
  2. (2).
    F. Fratini, G. Cilia, S. Mancini, and A. Felicioli, Microbiol. Res., 192, 130–141 (2016).CrossRefGoogle Scholar
  3. (3).
    S. Huang, C.-P. Zhang, K. Wang, G.-Q. Li, and F.-L. Hu, Molecules, 19, 19610 (2014).CrossRefGoogle Scholar
  4. (4).
    S.-V. McLennan, J. Bonner, S. Milne, L. Lo, A. Charlton, S. Kurup, J. Jia, D.-K. Yue, and S.-M. Twigg, Wound Repair Regen., 16, 706 (2008).CrossRefGoogle Scholar
  5. (5).
    S.-I. Pillai, P. Palsamy, S. Subramanian, and M. Kandaswamy, Pharm. Biol., 48, 1198 (2010).CrossRefGoogle Scholar
  6. (6).
    S.-A. Eming, T. Krieg, and J.-M. Davidson, J. Invest. Dermatol., 127, 514 (2007).CrossRefGoogle Scholar
  7. (7).
    J.-B. Daleprane and D.-S. Abdalla, Evid. Based Complement. Alternat. Med., 2013, 175135 (2013).CrossRefGoogle Scholar
  8. (8).
    C.-G.-F. Chan, K.-W. Cheung, and D.-M.-Y. Sze, Clinc. Rev. Allerg. Immunol., 44, 262 (2013).CrossRefGoogle Scholar
  9. (9).
    M. Dzialo, J. Mierziak, U. Korzun, M. Preisner, J. Szopa, and A. Kulma, Int. J. Mol. Sci., 17, 160 (2016).CrossRefGoogle Scholar
  10. (10).
    V.-G. Kadajji and G.-V. Betageri, Polymers, 3, 1972 (2011).CrossRefGoogle Scholar
  11. (11).
    N. Chirani, L. Yahia, L. Gritsch, F.-L. Motta, S. Chirani, and S. Fare, J. Biomed. Sci., 4, 1 (2015).Google Scholar
  12. (12).
    R. A-sasutjarit, A. Sirivat, and P. Vayumhasuwan, Pharm. Res., 22, 2134 (2005).CrossRefGoogle Scholar
  13. (13).
    A. Kaler, A.-K. Mittal, M. Katariya, H. Harde, A.-K. Agrawal, S. Jain, and U.-C. Banerjee, J. Nanopart. Res., 16, 2605 (2014).CrossRefGoogle Scholar
  14. (14).
    D.-K. Asami, Y.-J. Hong, D.-M. Barrett, and A.-E. Mitchell, J. Agric. Food Chem., 51, 1237 (2003).CrossRefGoogle Scholar
  15. (15).
    C.-C. Chang, M.-H. Yang, H.-M. Wen, and J.-C. Chern, J. Food Drug Anal., 10, 178 (2002).Google Scholar
  16. (16).
    M. Öztürk, F. Aydogmus-Öztürk, M.-E. Duru, and G. Topçu, Food Chem., 103, 623 (2007).CrossRefGoogle Scholar
  17. (17).
    D.-L. Granger, R.-R. Tanintor, K.-S. Boockvar, and Jr J.-B. Hibbs, Methods Ezymol., 268, 142 (1996).CrossRefGoogle Scholar
  18. (18).
    M.-P. Kähkönen, A.-I. Hopia, H.-J. Vuorela, J.-P. Rauha, K. Pihlaja, T.-S. Jujala, and M. Heinonen, J. Agric. Food Chem., 47, 3954 (1999).CrossRefGoogle Scholar
  19. (19).
    L. Aksoy, E. Kolay, Y. Agilönü, Z. Aslan, and M. Kargioglu, Saudi J. Biol. Sci., 20, 235 (2013).CrossRefGoogle Scholar
  20. (20).
    L.-C. Lu, Y.-W. Chen, and C.-C. Chou, Int. J. Food Microbiol., 102, 213 (2005).CrossRefGoogle Scholar
  21. (21).
    S. Stepanovic, N. Antic, I. Dakic, and M. Svabic-Vlahovic, Microbiol. Res., 158, 353 (2003).CrossRefGoogle Scholar
  22. (22).
    Y.-S. Song, E.-H. Park, G.-M. Hur, Y.-S. Ryu, Y.-M. Kim, and C. Jin, J. Ethnopharmacol., 80, 155 (2002).CrossRefGoogle Scholar
  23. (23).
    N. Paulino, C. Teixeira, R. Martins, A. Scremin, V.-M. Ddirsch, A.-M. Vollmar, S.-R. Abreu, S.-L de Castro, and M.-C. Marcucci, Planta Med., 72, 899 (2006).CrossRefGoogle Scholar
  24. (24).
    V.-R. Pasupuleti, L. Sammugam, N. Ramesh, and S.-H. Gan, Oxid. Med. Cell. Longev., 2017, 1 (2017).CrossRefGoogle Scholar
  25. (25).
    R. Gharibi, H. Yeganeh, A. Rezapour-Lactoee, and Z.-M. Hassan, ACS Appl. Mater. Interfaces, 7, 24296 (2015).CrossRefGoogle Scholar
  26. (26).
    S.-J. Kim, M.-H. Lim, I.-K. Chun, and Y.-H. Won, Skin Pharmacol., 10, 200 (1997).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Advanced Chemicals and EngineeringChonnam National UniversityGwangjuKorea
  2. 2.Department of Biomedical EngineeringChonnam National UniversityYeosuKorea
  3. 3.Research Center of Healthcare Biomedical EngineeringChonnam National UniversityYeosuKorea

Personalised recommendations