Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1241–1250 | Cite as

Covalent Immobilization of Arginine onto Polyacrylonitrile-Based Membrane for the Effective Separation of Oil/Water Emulsion

  • Xiang ShenEmail author
  • Peng Liu
  • Jiao Xu
  • Teng Liu
  • Jianjun Liu
  • Xianfu Shen
  • Shubiao Xia
  • Fan Wang
Article
  • 88 Downloads

Abstract

Membrane technology has been accepted as a very effective approach to purify oily wastewater. However, the serious membrane fouling induced by the adsorption of oily foulants significantly hinders the development of membrane technology in treating oily wastewater. To improve the anti-fouling property and oil/water separation efficiency of membrane, this work reports on the covalent immobilization of short-chain arginine (Arg) molecules onto polyacrylonitrile/polyacrylonitrile- co-poly(glycidyl methacrylate) (PAN/PAN-co-PGMA) blend membrane surface via a ring-opening reaction between epoxy groups and amine groups. It was found that the covalent immobilization of Arg molecules effectively increased the surface hydrophilicity of the membrane, resulting in a significant decrease of the interaction force between the foulants and the membrane surface. This typical characteristic was revealed by the pure water contact angle and the force-extension curve measurements. The Arg-immobilized membranes exhibited much higher separation efficiency against oil/water emulsions than the pristine PAN and PAN/PAN-co-PGMA membranes. Especially when the grafting amount of Arg was 157.3 μg/cm2, the oil rejection ratio of an Arg-immobilized membrane was as high as 99.2%. In addition, the flux recovery ratio of the membrane still reached 88.8%, even after two cycle filtrations of pure water and oil/water emulsion. These results indicated that the Arg-immobilized membrane may have practical applications for oil/water emulsion separation.

Keywords

polyacrylonitrile arginine oil/water emulsion hydrophilicity anti-fouling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. M. Liu, Y. Y. Hou, J. Li, and Z. G. Guo, Langmuir, 33, 3702 (2017).CrossRefGoogle Scholar
  2. (2).
    Y. L. Yu, H. Chen, Y. Liu, V. S. J. Craig, C. M. Wang, L. H. Li, and Y. Chen, Adv. Mater. Interfaces, 2, 1400267 (2015).CrossRefGoogle Scholar
  3. (3).
    R. Wahi, L. A. Chuah, T. S. Y. Choong, Z. Ngaini, and M. M. Nourouzi, Sep. Purif. Technol., 113, 51 (2013).CrossRefGoogle Scholar
  4. (4).
    M. Obaid, H. O. Mohamed, A. S. Yasin, M. A. Yassin, O. A. Fadali, H. Y. Kim, and N. A. M. Barakat, Water Res., 123, 524 (2017).CrossRefGoogle Scholar
  5. (5).
    X. Y. Zhou, F. F. Wang, Y. L. Ji, W. T. Chen, and J. F. Wei, Environ. Sci. Technol., 50, 3860 (2016).CrossRefGoogle Scholar
  6. (6).
    C. L. Zhang, P. Li, and B. Cao, Ind. Eng. Chem. Res., 55, 5030 (2016).CrossRefGoogle Scholar
  7. (7).
    C. D. Luo and Q. X. Liu, ACS Appl. Mater. Interfaces, 9, 8297 (2017).CrossRefGoogle Scholar
  8. (8).
    R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, J. Mater. Chem. A, 5, 16025 (2017).CrossRefGoogle Scholar
  9. (9).
    R. H. Kollarigowda, S. Abraham, and C. D. Montemagno, ACS Appl. Mater. Interfaces, 9, 29812 (2017).CrossRefGoogle Scholar
  10. (10).
    X. Shen, T. D. Xie, J. G. Wang, and F. Wang, Colloid. Polym. Sci., 295, 1211 (2017).CrossRefGoogle Scholar
  11. (11).
    S. A. Pervin, A. A. Prabu, K. J. Kim, and Y. T. Lee, Macromol. Res., 23, 86 (2015).CrossRefGoogle Scholar
  12. (12).
    Y. He, L. H. Xu, X. Feng, Y. P. Zhao, and L. Chen, J. Membr. Sci., 539, 421 (2017).CrossRefGoogle Scholar
  13. (13).
    Z. Ma, X. L. Lu, C. R. Wu, Q. J. Gao, L. H. Zhao, H. Zhang, and Z. Y. Liu, J. Membr. Sci., 524, 389 (2017).CrossRefGoogle Scholar
  14. (14).
    D. L. Cho, S. H. Kim, Y. I. Huh, D. Kim, S. Y. Cho, and B. H. Kim, Macromol. Res., 12, 553 (2004).CrossRefGoogle Scholar
  15. (15).
    J. L. Shen, Q. Zhang, Q. Yin, Z. L. Cui, W. X. Li, and W. H. Xing, J. Membr. Sci., 521, 95 (2017).CrossRefGoogle Scholar
  16. (16).
    R. Patel, M. Patel, S. H. Ahn, Y. K. Sung, H. K. Lee, J. H. Kim, and J. S. Sung, Mater. Sci. Eng. C, 33, 1662 (2013).CrossRefGoogle Scholar
  17. (17).
    T. Yuan, J. Q. Meng, T. Y. Hao, Z. H. Wang, and Y. F. Zhang, ACS Appl. Mater. Interfaces, 7, 14896 (2015).CrossRefGoogle Scholar
  18. (18).
    R. E. Holmlin, X. X. Chen, R. G. Chapman, S. Takayama, and G. M. Whitesides, Langmuir, 17, 2841 (2001).CrossRefGoogle Scholar
  19. (19).
    G. L. Zhao and W. N. Chen, Appl. Surf. Sci., 398, 103 (2017).CrossRefGoogle Scholar
  20. (20).
    C. H. Worthley, K. T. Constantopoulos, M. Ginic-Markovic, R. J. Pillar, J. G. Matisons, and S. Clarke, J. Membr. Sci., 385–386, 30 (2011).Google Scholar
  21. (21).
    X. Shen, J. Liu, X. Feng, Y. P. Zhao, and L. Chen, J. Biomed. Mater. Res. Part A, 103, 683 (2015).CrossRefGoogle Scholar
  22. (22).
    Z. H. An, R. Xu, F. Y. Dai, G. J. Xue, X. L. He, Y. P. Zhao, and L. Chen, RSC Adv., 7, 26593 (2017).CrossRefGoogle Scholar
  23. (23).
    D. M. Davenport, J. Lee, and M. Elimelech, Sep. Purif. Technol., 189, 389 (2017).CrossRefGoogle Scholar
  24. (24).
    T. Xiang, T. Lu, Y. Xie, W. F. Zhao, S. D. Sun, and C. S. Zhao, Acta Biomater., 40, 162 (2016).CrossRefGoogle Scholar
  25. (25).
    Y. Z. Zhu, F. Zhang, D. Wang, X. F. Pei, W. B. Zhang, and J. Jin, J. Mater. Chem. A, 1, 5758 (2013).CrossRefGoogle Scholar
  26. (26).
    C. Xu, X. J. Liu, B. B Xie, C. Yao, W. H. Hu, Y. Li, and X. S. Li, Appl. Surf. Sci., 385, 130 (2016).CrossRefGoogle Scholar
  27. (27).
    S. Y. Zhang, J. J. Cao, N. Ma, M. You, and J. Q. Meng, Appl. Surf. Sci., 428, 41 (2018).CrossRefGoogle Scholar
  28. (28).
    J. Zhu, D. P. Liu, and C. J. He, RSC Adv., 6, 85612 (2016).CrossRefGoogle Scholar
  29. (29).
    D. P. Liu, J. Z. Zheng, X. Wang, X. W. Lu, J. Zhu, and C. J. He, New J. Chem., 42, 2248 (2018).CrossRefGoogle Scholar
  30. (30).
    D. P. Liu, J. Zhu, M. Qiu, and C. J. He, RSC Adv., 6, 61434 (2016).CrossRefGoogle Scholar
  31. (31).
    Q. S. Liu, W. C. Li, H. Wang, B. Z. Newby, F. Cheng, and L. Y. Liu, Langmuir, 32, 7866 (2016).CrossRefGoogle Scholar
  32. (32).
    Q. S. Liu, A. Singh, and L. Y. Liu, Biomacromolecules, 14, 226 (2013).CrossRefGoogle Scholar
  33. (33).
    S. F. Chen, L. Y. Li, C. Zhao, and J. Zheng, Polymer, 51, 5283 (2010).CrossRefGoogle Scholar
  34. (34).
    H. Meng, Q. Cheng, and C. X. Li, Appl. Surf. Sci., 303, 399 (2014).CrossRefGoogle Scholar
  35. (35).
    L. Fan, Q. Zhang, Z. Yang, R. N. Zhang, Y. N. Liu, M. R. He, Z. Y. Jiang, and Y. L. Su, ACS Appl. Mater. Interfaces, 9, 13577 (2017).CrossRefGoogle Scholar
  36. (36).
    S. F. Li, Y. H. Fan, J. F. Hu, Y. S. Huang, and W. T. Wu, J. Mol. Catal. BEnzym., 73, 98 (2011).CrossRefGoogle Scholar
  37. (37).
    Y. B. Peng, F. Guo, Q. Y. Wen, F. C. Yang, and Z. G. Guo, Sep. Purif. Technol., 184, 72 (2017).CrossRefGoogle Scholar
  38. (38).
    S. Senthilkumar, S. Rajesh, A. Jayalakshmi, and D. Mohan. Mater. Sci. Eng. C: Mater., 33, 3615 (2013).CrossRefGoogle Scholar
  39. (39).
    A. Asatekin, S. Kang, M. Elimelech, and A. M. Mayes, J. Membr. Sci., 298, 136 (2007).CrossRefGoogle Scholar
  40. (40).
    Q. Shi, Y. L. Su, W. J. Chen, J. M. Peng, L. Y. Nie, L. Zhang, and Z. Y. Jiang, J. Membr. Sci., 366, 398 (2011).CrossRefGoogle Scholar
  41. (41).
    Y. F. Liu, C. Xu, B. B. Xie, W. H. Hu, Y. Li, and C. Yao, J. Coat. Technol. Res., 15, 403 (2018).CrossRefGoogle Scholar
  42. (42).
    Z. W. Xu, J. G. Zhang, M. J. Shan, Y. L. Li, B. D. Li, J. R. Niu, B. M. Zhou, and X. M. Qian, J. Membr. Sci., 458, 1 (2014).CrossRefGoogle Scholar
  43. (43).
    X. Shen, T. D. Xie, J. G. Wang, P. Liu, and F, Wang, RSC Adv., 7, 5262 (2017).CrossRefGoogle Scholar
  44. (44).
    J. Liu, X. Shen, Y. P. Zhao, and L. Chen, Ind. Eng. Chem. Res., 52, 18392 (2013).CrossRefGoogle Scholar
  45. (45).
    T. Barroso, M. Temtem, T. Casimiro, and A. Aguiar-Ricardo, J. Supercrit. Fluid., 56, 312 (2011).CrossRefGoogle Scholar
  46. (46).
    R. París, B. Mosquera, and J. L. de la Fuente, Eur. Polym. J., 44, 2920 (2008).CrossRefGoogle Scholar
  47. (47).
    L. S. Wan, Z. K. Xu, and X. J. Huang, J. Appl. Polym. Sci., 102, 4577 (2006).CrossRefGoogle Scholar
  48. (48).
    T. H. Dai and K. Ebert, J. Appl. Polym. Sci., 126, 136 (2012).CrossRefGoogle Scholar
  49. (49).
    C. Fu, K. Qian, and A. L. Fu, Mat. Sci. Eng. C-Mater., 76, 350 (2017).CrossRefGoogle Scholar
  50. (50).
    X. Zhang, Y. J. Duan, D. F. Wang, and F. L. Bian, Carbohydr. Polym., 122, 53 (2015).CrossRefGoogle Scholar
  51. (51).
    X. R. Chen, Y. Su, F. Shen, and Y. H. Wan, J. Membr. Sci., 384, 44 (2011).CrossRefGoogle Scholar
  52. (52).
    Y. N. Liu, Y. L. Su, X. T. Zhao, R. N. Zhang, T. Y. Ma, M. R. He, and Z. Y. Jiang, J. Membr. Sci., 499, 406 (2016).CrossRefGoogle Scholar
  53. (53).
    J. A. Zhu, Y. L. Su, X. T. Zhao, Y. F. Li, J. J. Zhao, X. C. Fan, and Z. Y. Jiang, Ind. Eng. Chem. Res., 53, 14046 (2014).CrossRefGoogle Scholar
  54. (54).
    G. Y. Zeng, Y. Q. Zhan, L. Zhang, H. Shi, and Z. X. Yu, Ind. Eng. Chem. Res., 55, 1760 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Xiang Shen
    • 1
    Email author
  • Peng Liu
    • 1
  • Jiao Xu
    • 1
  • Teng Liu
    • 1
  • Jianjun Liu
    • 1
  • Xianfu Shen
    • 1
  • Shubiao Xia
    • 1
  • Fan Wang
    • 1
  1. 1.College of chemistry and environmental scienceQujing Normal UniversityQujingP. R. China

Personalised recommendations