Macromolecular Research

, Volume 27, Issue 1, pp 14–24 | Cite as

Single-Chain Conformational Characteristics of Comb-Like Polyelectrolytes: Molecular Dynamics Simulation Study

  • Soheila EmamyariEmail author
  • Hossein Fazli


The single-chain conformation of a model comb polyelectrolyte, in which the electric charges are located on the last monomer of side chains, has been studied using molecular dynamics simulations. The model chain has a hydrophobic backbone and hydrophilic side chains. The influence of parameters such as the length of backbone and side chains, the grafting density of side chains, flexibility of the chain and different strengths of backbone hydrophobicity have been investigated. At high grafting density of side chains, a transition from turn to pearl-necklace and finally to globular conformation is observed by increasing the hydrophobicity. Radius of gyration (Rg) of the backbone depends linearly on the number of backbone monomers at low values of the backbone hydrophobicity, but at high values of the backbone hydrophobicity, because of the appearance of turn-like segments between successive globular sections in the pearl-necklace structure, the scaling exponent of Rg versus N is larger. Also, the chain flexibility affects the backbone conformation significantly. The increase of the persistence length leads to the appearance of the folded and then the extended conformations. In addition to the statistical properties of the chains, the investigation of the relaxation of the chains conformation shows that, the backbone takes almost its final conformation in the early time steps of the simulation for all conditions. It means that the relaxation time of the chain is relatively short (fast relaxation).


comb-like polyelectrolyte single-chain conformation molecular dynamics simulation radius of gyration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7010_MOESM1_ESM.pdf (365 kb)
Supporting Information
13233_2019_7010_MOESM2_ESM.mpg (658 kb)
Supplementary material, approximately 658 KB.
13233_2019_7010_MOESM3_ESM.mpg (652 kb)
Supplementary material, approximately 652 KB.
13233_2019_7010_MOESM4_ESM.mpg (652 kb)
Supplementary material, approximately 652 KB.
13233_2019_7010_MOESM5_ESM.mpg (650 kb)
Supplementary material, approximately 650 KB.
13233_2019_7010_MOESM6_ESM.mpg (654 kb)
Supplementary material, approximately 654 KB.
13233_2019_7010_MOESM7_ESM.mpg (652 kb)
Supplementary material, approximately 652 KB.
13233_2019_7010_MOESM8_ESM.mpg (650 kb)
Supplementary material, approximately 650 KB.
13233_2019_7010_MOESM9_ESM.mpg (652 kb)
Supplementary material, approximately 652 KB.
13233_2019_7010_MOESM10_ESM.mpg (672 kb)
Supplementary material, approximately 672 KB.
13233_2019_7010_MOESM11_ESM.mpg (664 kb)
Supplementary material, approximately 664 KB.
13233_2019_7010_MOESM12_ESM.mpg (670 kb)
Supplementary material, approximately 670 KB.


  1. (1).
    J.-L. Barrat and J.-F. Joanny, in Advances in Chemical Physics: Polymeric Systems, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1996, Ch. Theory of polyelectrolyte solutions, Vol. 94, pp 1–66.Google Scholar
  2. (2).
    H. Dautzenberg, Polyelectrolytes, Formation, Characterization and Applications, Hanser Publishers: Munich, Germany, 1994.Google Scholar
  3. (3).
    P. Pincus, Macromolecules, 24, 2912 (1991).CrossRefGoogle Scholar
  4. (4).
    T. Phenrat, N. Saleh, K. Sirk, H.-J. Kim, R. D. Tilton, and G. V. Lowry, J. Nanopart. Res., 10, 795 (2008).CrossRefGoogle Scholar
  5. (5).
    M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, Smart Mater. Struct., 7, R15 (1998).CrossRefGoogle Scholar
  6. (6).
    M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 13, 1362 (2004).CrossRefGoogle Scholar
  7. (7).
    M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 9, 543 (2000).CrossRefGoogle Scholar
  8. (8).
    T. Mirfakhrai, J. D. W. Madden, and R. H. Baughman, Mater. Today, 10, 30 (2007).CrossRefGoogle Scholar
  9. (9).
    A. V. Dobrynin, A. Deshkovski, and M. Rubinstein, Phys. Rev. Lett., 84, 3101 (2000).CrossRefGoogle Scholar
  10. (10).
    A. V. Dobrynin and M. Rubinstein, Macromolecules, 34, 1964 (2001).CrossRefGoogle Scholar
  11. (11).
    M. Ullner and C. E. Woodward, Macromolecules, 35, 1437 (2002).CrossRefGoogle Scholar
  12. (12).
    H. J. Limbach and C. Holm, Comput. Phys. Commun., 147, 321 (2002).CrossRefGoogle Scholar
  13. (13).
    S. Liu, K. Ghosh, and M. Muthukumar, J. Chem. Phys., 119, 1813 (2003).CrossRefGoogle Scholar
  14. (14).
    M. Schönhoff, J. Phys. Condens. Matter, 15, R1781 (2003).CrossRefGoogle Scholar
  15. (15).
    A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci., 30, 1049 (2005).CrossRefGoogle Scholar
  16. (16).
    H. Fazli and R. Golestanian, Phys. Rev. E, 76, 041801 (2007).CrossRefGoogle Scholar
  17. (17).
    A. V. Dobrynin, Curr. Opin. Colloid Interface Sci., 13, 376 (2008).CrossRefGoogle Scholar
  18. (18).
    H. Fazli, S. Mohammadinejad, and R. Golestanian, J. Phys. Condens. Matter, 21, 424111 (2009).CrossRefGoogle Scholar
  19. (19).
    M. Turesson, C. Labbez, and A. Nonat, Langmuir, 27, 13572 (2011).CrossRefGoogle Scholar
  20. (20).
    S. Das, M. Banik, G. Chen, S. Sinha, and R. Mukherjee, Soft Matter, 11, 8550 (2015).CrossRefGoogle Scholar
  21. (21).
    A. Brunet, C. Tardin, L. Salomé, P. Rousseau, N. Destainville, and M. Manghi, Macromolecules, 48, 3641 (2015).CrossRefGoogle Scholar
  22. (22).
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, New York, 2002.Google Scholar
  23. (23).
    T. A. Waigh and A. Papagiannopoulos, Polymers, 2, 57 (2010).CrossRefGoogle Scholar
  24. (24).
    S. Emamyari and H. Fazli, Eur. Biophys. J., 43, 143 (2014).CrossRefGoogle Scholar
  25. (25).
    S. Zhang, T. Holmes, C. Lockshin, and A. Rich, Proc. Natl. Acad. Sci. U.S.A., 90, 3334 (1993).CrossRefGoogle Scholar
  26. (26).
    S. Emamyari and H. Fazli, Soft Matter, 10, 4248 (2014).CrossRefGoogle Scholar
  27. (27).
    Y. Hong, R. L. Legge, S. Zhang, and P. Chen, Biomacromolecules, 4, 1433 (2003).CrossRefGoogle Scholar
  28. (28).
    S. Jun, Y. Hong, H. Imamura, B.-Y. Ha, J. Bechhoefer, and P. Chen, Biophys. J., 87, 1249 (2004).CrossRefGoogle Scholar
  29. (29).
    H. Yang, S.-Y. Fung, M. Pritzker, and P. Chen, J. Am. Chem. Soc., 129, 12200 (2007).CrossRefGoogle Scholar
  30. (30).
    S. Emamyari, F. Kargar, V. Sheikh-hasani, S. Emadi, and H. Fazli, Eur. Biophys. J., 44, 263 (2015).CrossRefGoogle Scholar
  31. (31).
    Y. Rouault, and O. V. Borisov, Macromolecules, 29, 2605 (1996).CrossRefGoogle Scholar
  32. (32).
    Y. Rouault, Macromol. Theory Simul., 7, 359 (1998).CrossRefGoogle Scholar
  33. (33).
    K. Shiokawa, K. Itoh, and N. Nemoto, J. Chem. Phys., 111, 8165 (1999).CrossRefGoogle Scholar
  34. (34).
    A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, Macromolecules, 36, 5020 (2003).CrossRefGoogle Scholar
  35. (35).
    E. Y. Kramarenko, O. S. Pevnaya, and A. R. Khokhlov, J. Chem. Phys., 122, 084902 (2005).CrossRefGoogle Scholar
  36. (36).
    O. Borodin and G. D. Smith, Macromolecules, 40, 1252 (2007).CrossRefGoogle Scholar
  37. (37).
    P. Košovan, Z. Limpouchová, and K. Procházka, J. Phys. Chem. B, 111, 8605 (2007).CrossRefGoogle Scholar
  38. (38).
    H. Qi and C. Zhong, J. Phys. Chem. B, 112, 10841 (2008).CrossRefGoogle Scholar
  39. (39).
    L.-T. Yan and X. Zhang, Langmuir, 25, 3808 (2009).CrossRefGoogle Scholar
  40. (40).
    P. Košovan, J. Kuldová, Z. Limpouchová, K. Procházka, E. B. Zhulina, and O. V. Borisov, Macromolecules, 42, 6748 (2009).CrossRefGoogle Scholar
  41. (41).
    J.-M. Y. Carrillo and A. V. Dobrynin, Langmuir, 26, 18374 (2010).CrossRefGoogle Scholar
  42. (42).
    K. Tong, X. Song, S. Sun, Y. Xu, and J. Yu, Mol. Phys., 112, 2176 (2014).CrossRefGoogle Scholar
  43. (43).
    F. Dalas, A. Nonat, S. Pourchet, M. Mosquet, D. Rinaldi, and S. Sabio, Cem. Concr. Res., 67, 21 (2015).CrossRefGoogle Scholar
  44. (44).
    M. Ghelichi and M. H. Eikerling, J. Phys. Chem. B, 120, 2859 (2016).CrossRefGoogle Scholar
  45. (45).
    H. J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comput. Phys. Commun., 174, 704 (2006).CrossRefGoogle Scholar
  46. (46).
    M. Rubinstein and R. H. Colby, Polymer Physics, Oxford University Press, New York, United States, 2003.Google Scholar
  47. (47).
    I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys., 50, 683 (1978).CrossRefGoogle Scholar
  48. (48).
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules, 36, 10103 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Department of Biological SciencesInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran

Personalised recommendations