Macromolecular Research

, Volume 27, Issue 1, pp 90–95 | Cite as

Acceptor Unit Effects for Ambipolar Organic Field-Effect Transistors Based on TIPS-Benzodithiophene Copolymers

  • Henry Opoku
  • Chinna Bathula
  • Melaku Dereje Mamo
  • Nabeen K. Shrestha
  • Taegweon Lee
  • Yong-Young NohEmail author


Two narrow band gap triisopropylsilyl substituted benzo[1,2-b:4,5-b] dithiophene (TIPS-BDT) derivatives, P1 (1.65 eV) and P2 (1.46 eV) are synthesized for ambipolar organic field-effect transistors and complementary inverters. Two electron acceptor units, heptadecanyl substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) and ethylhexyl substituted diketopyrrolo[3,4-c]pyrrole (DPP) are incorporated to tune the structure and resulting properties of the donor-acceptor type copolymers. Structural modification based on the acceptor unit variation, resulted in comparable electrochemical, optical, microstructural, and charge transporting properties, as well as environmental and operational stability. TIPS-BDT copolymers with TPD acceptor units show comparatively superior performance, with field effect mobility ∼10-3 cm2V-1s-1 for both holes and electrons and inverter gain ∼18 with poly(methyl methacrylate) gate dielectric.


TIPS-benzodithiophene ambipolar polymer organic field-effect transistors complementary inverters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7008_MOESM1_ESM.pdf (1.8 mb)
Supporting Information


  1. (1).
    H. Opoku, J. Y. Lee, K. Cho, B. Nketia-Yawson, B. Lim, and Y.-Y. Noh, Macromol. Chem. Phys., 218, 1700225 (2017).CrossRefGoogle Scholar
  2. (2).
    W. T. Park, G. Kim, C. Yang, C. Liu, and Y.-Y. Noh, Adv. Funct. Mater., 26, 4695 (2016).CrossRefGoogle Scholar
  3. (3).
    T. Bura, S. Beaupré, M.-A. Légaré, J. Quinn, E. Rochette, J. T. Blaskovits, F.-G. Fontaine, A. Pron, Y. Li, and M. Leclerc, Chem. Sci., 8, 3913 (2017).CrossRefGoogle Scholar
  4. (4).
    X. Zhou, N. Ai, Z. H. Guo, F. D. Zhuang, Y. S. Jiang, J. Y. Wang, and J. Pei, Chem. Mater., 27, 1815 (2015).CrossRefGoogle Scholar
  5. (5).
    G. D. Tabi, B. Nketia-Yawson, J. Y. Lee, K. Cho, B. Lim, and Y.-Y. Noh, RSC Adv., 7, 1110 (2017).CrossRefGoogle Scholar
  6. (6).
    L. Ye, S. Q. Zhang, L. J. Huo, M. J. Zhang, and J. H. Hou, Acc. Chem. Res., 47, 1595 (2014).CrossRefGoogle Scholar
  7. (7).
    J. Mei and Z. Bao, Chem. Mater., 26, 604 (2014).CrossRefGoogle Scholar
  8. (8).
    J. Min, Z. Zhang, S. Zhang, and Y. Li, Chem. Mater., 24, 3247 (2012).CrossRefGoogle Scholar
  9. (9).
    X. Guo, R. P. Ortiz, Y. Zheng, Y. Hu, Y. Y. Noh, K. J. Baeg, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 133, 1405 (2011).CrossRefGoogle Scholar
  10. (10).
    J. H. Kim, H. U. Kim, J. K. Lee, M. J. Park, M. H. Hyun, and D. H. Hwang, Synth. Met., 179, 18 (2013).CrossRefGoogle Scholar
  11. (11).
    E. Zhu, G. Luo, Y. Liu, J. Yu, F. Zhang, G. Che, H. Wu, and W. Tang, J. Mater. Chem. C, 3, 1595 (2015).CrossRefGoogle Scholar
  12. (12).
    K. C. Lee, G. S. Ryu, S. Chen, G. Kim, Y.-Y. Noh, and C. Yang, Org. Electron., 37, 402 (2016).CrossRefGoogle Scholar
  13. (13).
    T. E. Kang, H. H. Cho, H. J. Kim, W. Lee, H. Kang, and B. J. Kim, Macromolecules, 46, 6806 (2013).CrossRefGoogle Scholar
  14. (14).
    Q. Wu, M. Wang, X. Qiao, Y. Xiong, Y. Huang, X. Gao, and H. Li, Macromolecules, 46, 3887 (2013).CrossRefGoogle Scholar
  15. (15).
    J.-H. Kim, M. Lee, H. Yang, and D.-H. Hwang, J. Mater. Chem. A, 2, 6348 (2014).CrossRefGoogle Scholar
  16. (16).
    C. Bathula, C. E. Song, S. Badgujar, S.-J. Hong, I.-N. Kang, S.-J. Moon, J. Lee, S. Cho, H.-K. Shim, and S. K. Lee, J. Mater. Chem., 22, 22224 (2012).CrossRefGoogle Scholar
  17. (17).
    C. Bathula, S. Badgujar, N. S. Belavagi, S. K. Lee, Y. Kang, and I. A. M. Khazi, J. Fluoresc., 26, 371 (2016).CrossRefGoogle Scholar
  18. (18).
    C. Bathula, K. Buruga, Y. Kang, and I. A. M. Khazi, J. Fluoresc., 27, 1067 (2017).CrossRefGoogle Scholar
  19. (19).
    Y. Deng, Y. Chen, X. Zhang, H. Tian, C. Bao, D. Yan, Y. Geng, and F. Wang, Macromolecules, 45, 8621 (2012).CrossRefGoogle Scholar
  20. (20).
    P. Berrouard, S. Dufresne, A. Pron, J. Veilleux, and M. Leclerc, J. Org. Chem., 77, 8167 (2012).CrossRefGoogle Scholar
  21. (21).
    X. Guo, R. P. Ortiz, Y. Zheng, M. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 133, 13685 (2011).CrossRefGoogle Scholar
  22. (22).
    J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc., 133, 20799 (2011).CrossRefGoogle Scholar
  23. (23).
    R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, and Y. H. Kim, Adv. Funct. Mater., 23, 5719 (2013).CrossRefGoogle Scholar
  24. (24).
    J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, and F. Wudl, Adv. Mater., 23, 3780 (2011).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Henry Opoku
    • 1
  • Chinna Bathula
    • 1
  • Melaku Dereje Mamo
    • 1
  • Nabeen K. Shrestha
    • 1
  • Taegweon Lee
    • 1
  • Yong-Young Noh
    • 1
    Email author
  1. 1.Department of Energy and Materials EngineeringDongguk UniversitySeoulKorea

Personalised recommendations