Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro

  • 183 Accesses

  • 2 Citations

Abstract

Aliphatic polycarbonate-based block copolymers have received considerable attention as carriers for targeted drug and gene delivery because of their biocompatibility and biodegradability. However, there is little understanding of their phase behaviour and physicochemical characterization of the particles made from them. Here, we prepared a series of well-defined poly(trimethylene carbonate) (PTMC)-based copolymers with molar masses of 3–9 kg·mol-1 by metal-free ring-opening polymerization using dihydroxy-terminated poly(ethylene oxide) as a macroinitiator. Micellar nanoparticles self-assembled from copolymers had a size of less than 130 nm. They were degraded by the action of a model lipase from Mucor Miehei at 37 °C, which is of high importance for biodegradability in the living organism. X-ray diffraction and differential scanning calorimetry proved that amorphous copolymers with more than 39 mol% of carbonate units and representative particles were prone to the rearrangement of PTMC chains during storage and to thus undergo post-crystallization. Our findings can contribute to the comprehensive characterization of polycarbonate biomaterials for medical applications.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    S. B. Blanquer, S. Sharifi, and D. W. Grijpma, J. Appl. Biomater. Funct. Mater., 10 (2012).

  2. (2)

    L. Timbart, M. Y. Tse, S. C. Pang, O. Babasola, and B. G. Amsden, Macromol. Biosci., 9, 786 (2009).

  3. (3)

    A. D. Messias, K. F. Martins, A. C. Motta, and E. A. d. R. Duek, Int. J. Biomater., 2014 (2014).

  4. (4)

    A. Leeuwen, H. Yuan, G. Passanisi, J. Meer, J. Bruijn, T. Kooten, D. Grijpma, and R. Bos, Eur. Cells Mater., 27, 81 (2014).

  5. (5)

    K. Fukushima, Biomater. Sci., 4, 9 (2016).

  6. (6)

    R. R. Vogels, J. W. Bosmans, K. W. van Barneveld, V. Verdoold, S. van Rijn, M. J. Gijbels, J. Penders, S. O. Breukink, D. W. Grijpma, and N. D. Bouvy, Surgery, 157, 1113 (2015).

  7. (7)

    Z. Zhang, R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J. Feijen, Biomater–ials, 27, 1741 (2006).

  8. (8)

    A. C. Albertsson and M. Eklund, J. Appl. Polym. Sci., 57, 87 (1995).

  9. (9)

    O. S. Kluin, H. C. van der Mei, H. J. Busscher, and D. Neut, Biomaterials, 30, 4738 (2009).

  10. (10)

    M. S. Kim, H. Hyun, B. S. Kim, G. Khang, and H. B. Lee, Current Appl. Phys., 8, 646 (2008).

  11. (11)

    D. Neut, O. S. Kluin, B. J. Crielaard, H. C. van der Mei, H. J. Busscher, and D. W. Grijpma, Acta Orthop., 80, 514 (2009).

  12. (12)

    S. J. Buwalda, L. B. Perez, S. Teixeira, L. Calucci, C. Forte, J. Feijen, and P. J. Dijkstra, Biomacromolecules, 12, 2746 (2011).

  13. (13)

    F. Nederberg, J. Watanabe, K. Ishihara, J. Hilborn, and T. Bowden, J. Biomater. Sci., Polym. Ed., 17, 605 (2006).

  14. (14)

    A.–C. Albertsson, A. Löfgren, C. Sturesson, and M. Sjöling, Design of New Building Blocks in Resorbable Polymers, ACS Publications, 1992.

  15. (15)

    H. Wang, J. H. Dong, A. Y. Qiu, and Z. W. Gu, J. Macromol. Sci., Part A, 35, 811 (1998).

  16. (16)

    Y. Zhang and R.–X. Zhuo, Biomaterials, 26, 2089 (2005).

  17. (17)

    Y. Zhang, H. F. Chan, and K. W. Leong, Adv. Drug Deliv. Rev., 65, 104 (2013).

  18. (18)

    Y. K. Feng and S. F. Zhang, J. Polym. Sci., Part A: Polym. Chem., 43, 4819 (2005).

  19. (19)

    Z. Zhang, D. W. Grijpma, and J. Feijen, J. Control. Release, 116, e28 (2006).

  20. (20)

    X. Jiang, H. Xin, X. Sha, J. Gu, Y. Jiang, K. Law, Y. Chen, L. Chen, X. Wang, and X. Fang, Int. J. Pharm., 420, 385 (2011).

  21. (21)

    G. Mittal, D. K. Sahana, V. Bhardwaj, and M. N. V. Ravi Kumar, J. Control. Release, 119, 77 (2007).

  22. (22)

    V. Karavelidis, E. Karavas, D. Giliopoulos, S. Papadimitriou, and D. Bikiaris, Int. J. Nanomedicine, 6, 3021 (2011).

  23. (23)

    H. Hyun, M. S. Kim, G. Khang, and H. B. Lee, J. Polym. Sci., Part A: Polym. Chem., 44, 4235 (2006).

  24. (24)

    L. Liao, C. Zhang, and S. Gong, React. Funct. Polym., 68, 751 (2008).

  25. (25)

    J. Gross, S. Sayle, A.R. Karow, U. Bakowsky, and P. Garidel, Eur. J. Pharm. Biopharm., 104, 30 (2016).

  26. (26)

    C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso, J. Control. Release, 75, 211 (2001).

  27. (27)

    J. Trousil, S. K. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, and P. Štěpánek, Nanomedicine, 13, 307 (2017).

  28. (28)

    Y. Wan, Z. Gan, and Z. Li, Polym. Chem., 5, 1720 (2014).

  29. (29)

    H. Yao, J. Li, N. Li, K. Wang, X. Li, and J. Wang, Polymers, 9, 598 (2017).

  30. (30)

    J. Li, X. Li, X. Ni, and K.W. Leong, Macromolecules, 36, 2661 (2003).

  31. (31)

    A. K. Mohanty, U. Jana, P. K. Manna, and G. P. Mohanta, Prog. Biomaterials, 4, 89 (2015).

  32. (32)

    S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohydr. Polym., 41, 197 (2000).

  33. (33)

    K. J. Zhu, R. W. Hendren, K. Jensen, and C. G. Pitt, Macromolecules, 24, 1736 (1991).

  34. (34)

    C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, Biomaterials, 31, 3657 (2010).

  35. (35)

    A. Mayer, M. Vadon, B. Rinner, A. Novak, R. Wintersteiger, and E. Fröhlich, Toxicology, 258, 139 (2009).

  36. (36)

    K. Letchford and H. M. Burt, Mol. Pharm., 9, 248 (2012).

  37. (37)

    J. Logie, S. C. Owen, C. K. McLaughlin, and M. S. Shoichet, Chem. Mater., 26, 2847 (2014).

  38. (38)

    R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. Ferguson, P. Hole, B. Carr, C. W. Redman, A. L. Harris, and P. J. Dobson, Nanomedicine, 7, 780 (2011).

  39. (39)

    C. Gardiner, Y. J. Ferreira, R. A. Dragovic, C. W. Redman, and I. L. Sargent, J. Extracell. Vesicles, 2, 19671 (2013).

  40. (40)

    S. L. N. Maas, J. de Vrij, E. J. van der Vlist, B. Geragousian, L. van Bloois, E. Mastrobattista, R. M. Schiffelers, M. H. M. Wauben, M. L. D. Broekman, and E. N. M. Nolte’t Hoen, J. Control. Release, 200, 87 (2015).

  41. (41)

    B. Carr, P. Hole, A. Malloy, P. Nelson, and J. Smith, Eur. J. Parenter. Sci. Pharm. Sci., 14, 45 (2009).

  42. (42)

    F. De Jaeghere, E. Allémann, J.–C. Leroux, W. Stevels, J. Feijen, E. Doelker, and R. Gurny, Pharm. Res., 16, 859 (1999).

  43. (43)

    W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Adv. Drug Deliv. Rev., 58, 1688 (2006).

  44. (44)

    Y. Tabata and Y. Ikada, in New Polymer Materials, Springer 1990, pp 107–141.

  45. (45)

    A. Kawashima, K. Tanigawa, T. Akama, H. Wu, M. Sue, A. Yoshihara, Y. Ishido, K. Kobiyama, F. Takeshita, K.J. Ishii, H. Hirano, H. Kimura, T. Sakai, N. Ishii, and K. Suzuki, Endocrinology, 152, 1702 (2011).

  46. (46)

    H. Abdelkader, B. Pierscionek, and R.G. Alany, Int. J. Pharm., 477, 631 (2014).

  47. (47)

    T. L. Whiteside, A. Gambotto, A. Albers, J. Stanson, and E. P. Cohen, Proc. Natl. Acad. Sci., 99, 9415 (2002).

Download references

Author information

Correspondence to Soňa Hermanová.

Additional information

Acknowledgment: This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR) and from specific university research (MSMT No 21-SVV/2018).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reinišová, L., Novotný, F., Pumera, M. et al. Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro. Macromol. Res. 26, 1026–1034 (2018). https://doi.org/10.1007/s13233-019-7007-6

Download citation

Keywords

  • amphiphilic copolymers
  • crystallization
  • self-assembly
  • enzyme degradation