Macromolecular Research

, Volume 27, Issue 1, pp 73–82 | Cite as

Photochemical Studies and Photoinduced Antibacterial Properties of Silver Nanoparticle-Encapsulated Biomacromolecule Bovine Serum Albumin Functionalised with Photoresponsive Chromophoric System 2-[(E)-(3-Hydroxynaphthalen-2-yl) diazenyl] Benzoic Acid

  • Linta Maria Jose
  • Sunny KuriakoseEmail author


This study establishes the synthesis of silver nanoparticles (AgNPs), synthesis of a photoresponsive system 2-[(E)-(3-hydroxynaphthalen-2-yl) diazenyl] benzoic acid, and encapsulation of AgNPs into the biomacromolecular system, bovine serum albumin (BSA) functionally modified with the photoactive system by means of DCC coupling. The optical properties, structural properties, morphology, and size distribution were confirmed by various characterisation techniques such as ultraviolet (UV)/visible, Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). The photo responsive behaviour of the functionally modified BSA and nanoparticle dispersed system were investigated. The antibacterial effects of AgNPs and photo induced antimicrobial properties of the functionally modified BSA-AgNP conjugates were evaluated against some selected bacterial strains such as Corynebacterium diphtheriae (gram +ve), Bacillus cereus (gram +ve), Raoultella ornithinolytica (gram -ve), and Salmonella typhimurium (gram -ve) using disc diffusion. We found that silver nanoparticles encapsulating functionally modified BSA seem to be an effective photoactive antimicrobial agent against the multidrug resistant strains of bacteria with better photo responsive properties and with wide applications in antimicrobial photodynamic therapy (APDT).


silver nanoparticle 2-[(E)-(3-hydroxynaphthalen-2-yl) diazenyl] benzoic acid bovine serum albumin DCC coupling encapsulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T. Maisch, R. Szeimies, G. Jori, and C. Abels, Photochem. Photobiol. Sci., 3, 907 (2004).CrossRefGoogle Scholar
  2. (2).
    D. K. Chatterjee, L. S. Fong, and Y. Zhang, Adv. Drug Deliv. Rev., 60, 1627 (2008).CrossRefGoogle Scholar
  3. (3).
    S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, and M. Wilson, Photochem. Photobiol. Sci., 10, 712, (2011).CrossRefGoogle Scholar
  4. (4).
    M. Schafer, C. Schmitzand, and G. Horneck, Int. J. Radiat. Biol., 74, 249 (1998).CrossRefGoogle Scholar
  5. (5).
    D. C. Ferreira, C. S. Monteiro, C. R. Chaves, G. A. M. Sáfar, R. L. Moreira, M. V. B. Pinheiro, D. C. S. Martins, L. O. Ladeira, and K. Krambrock, Colloids Surf. B: Biointerfaces, 150, 297 (2017).CrossRefGoogle Scholar
  6. (6).
    Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, J. Fluoresc., 17, 345 (2007).CrossRefGoogle Scholar
  7. (7).
    S. M. Mooi and B. Heyne, Photochem. Photobiol., 90, 85 (2014).CrossRefGoogle Scholar
  8. (8).
    O. Planas, N. Macia, M. Agut, S. Nonell, and B. Heyne, J. Am. Chem. Soc., 138, 2762 (2016).CrossRefGoogle Scholar
  9. (9).
    K. Alaqad and T. A. Saleh, J. Environ. Anal. Toxicol., 6, 384 (2016).CrossRefGoogle Scholar
  10. (10).
    Y. A. Krutyakov, A. A. Kudrinskiy, A. Y. Olenin, and G. V. Lisichkin, Russian Chem. Rev., 77, 33 (2008).CrossRefGoogle Scholar
  11. (11).
    S. Srinivasan, V. Bhardwaj, A. Nagasetti, A. Fernandez, and A. J. McGoron, J. Biomed. Nanotechnol., 12, 2202 (2016).CrossRefGoogle Scholar
  12. (12).
    I. M. Tynga, A. Hussein, M. A. Harith, and H. Abrahamse, Int. J. Nanomedicine, 9, 3771 (2014).Google Scholar
  13. (13).
    R. Corato, D. Palumberi, R. Marotta, M. Scotto, S. Carregal-Romero, P. Rivera-Gil, W. J. Parak, and T. Pellegrino, Small, 8, 2731 (2012).CrossRefGoogle Scholar
  14. (14).
    C. George, S. Kuriakose, S. George, and T. Mathew, Supramol. Chem., 23, 593 (2011).CrossRefGoogle Scholar
  15. (15).
    T. V. Mathew and S. Kuriakose, Colloids Surf. B: Biointerfaces, 101, 14 (2013).CrossRefGoogle Scholar
  16. (16).
    Y. E. L. Koo, W. Fan, H. Hah, H. Xu, D. Orringer, B. Ross, A. Rehemtulla, M. A. Philbert, and R. Kopelman, Appl. Opt., 46, 1924 (2007).CrossRefGoogle Scholar
  17. (17).
    H. Hiroki and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).CrossRefGoogle Scholar
  18. (18).
    A. Chandran, S. Kuriakose, and T. Mathew, Polym. Adv. Technol., 24, 525 (2013).CrossRefGoogle Scholar
  19. (19).
    D. J. Alderman and P. Smith, Aquaculture, 196, 211 (2001).CrossRefGoogle Scholar
  20. (20).
    Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 3rd ed., M31-A3, Vol. 28:8 (2008).Google Scholar
  21. (21).
    T. Pradeep, NANO the Essentials, Tata McGraw-Hill Education, New Delhi, 2007.Google Scholar
  22. (22).
    B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Edison-Wesley Publishing Company Inc, USA, 1978.Google Scholar
  23. (23).
    I. Capek, Noble metal nanoparticles, Nanostructure science and technology, Springer Japan K K, 2017.CrossRefGoogle Scholar
  24. (24).
    C. L. Friedrich, D. Moyles, T. J. Beveridge, and R. E. Hancock, Antimicrob. Agents Chemother., 44, 2086 (2000).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research and Post Graduate Department of Chemistry, St. Thomas CollegeMahatma Gandhi UniversityKottayamIndia
  2. 2.Research and Post Graduate Department of Chemistry, K. E. CollegeMahatma Gandhi UniversityKottayamIndia

Personalised recommendations