Advertisement

Macromolecular Research

, Volume 27, Issue 1, pp 61–72 | Cite as

Covalent Immobilization of EPCs-Affinity Peptide on Poly(L-Lactide-co-ε-Caprolactone) Copolymers to Enhance EPCs Adhesion and Retention for Tissue Engineering Applications

  • Jongyoon Rhee
  • Muhammad Shafiq
  • Donghak Kim
  • Youngmee Jung
  • Soo Hyun KimEmail author
Article
  • 98 Downloads

Abstract

Small diameter vascular grafts (inner diameter ≤ 6 mm) have a critical limitation regarding inner thrombotic reaction and occlude when implanted as artificial substitutes. In situ capture of endothelial progenitor cells (EPCs) could be beneficial to improve the endothelialization of artificial blood vessels. This study aimed to develop EPCs-affinity peptide (TPSLEQRTVYAK, TPS) and heparin-conjugated star-shaped poly(L-lactide-co-ε-caprolactone) (St-PLCL) copolymers to simultaneously capture EPCs and improve the hemocompatibility of vascular grafts, respectively. Electrospun membranes and small-diameter vascular grafts were fabricated by mixing linear PLCL, heparin-conjugated St-PLCL (PLCL-Hep), and TPS-conjugated St-PLCL (PLCL-TPS) copolymers. Vascular grafts exhibited biomechanical properties similar to the ISO standard. Membranes containing PLCL-Hep and PLCL-TPS showed fewer adhered platelets than did the control membranes. Moreover, electrospun membranes containing PLCL-Hep and PLCL-TPS adhered significantly to more EPCs than did the control group; however, three types of membranes did not appreciably differ in terms of the attachment of endothelial cells (ECs). Subcutaneous implantation of vascular grafts in Sprague-Dawley rats led to cellular infiltration and neotissue formation, which increased with the passage of time. Taken together, PLCL-TPS and PLCL-Hep copolymers can be fabricated into small-diameter vascular grafts to facilitate endothelialization through endogenous cell recruitment for vascular tissue regeneration applications.

Keywords

poly(L-lactide-co-ε-caprolactone) vascular grafts endothelial progenitor cells cell adhesion endothelialization polyester TPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W. Zeng, C. Wen, Y. Wu, L. Li, Z. Zhou, J. Mi, W. Chen, M. Yang, C. Hou, and J. Sun, Biomaterials, 33, 473 (2012).CrossRefGoogle Scholar
  2. (2).
    W.-D. Fan, X.-Q. Zhang, H.-L. Guo, W.-W. Zeng, N. Zhang, Q.-Q. Wan, W.-Y. Xie, J. Cao, and C.-H. Xu, Asian Pac. J. Cancer Prev., 13, 1477 (2012).CrossRefGoogle Scholar
  3. (3).
    H. Kurobe, M. W. Maxfield, C. K. Breuer, and T. Shinoka, Stem Cells Transl. Med., 1, 566 (2012).CrossRefGoogle Scholar
  4. (4).
    S. Pashneh-Tala, S. MacNeil, and F. Claeyssens, Tissue Eng., Part B, 22, 68 (2015).CrossRefGoogle Scholar
  5. (5).
    P. Zilla, D. Bezuidenhout, and P. Human, Biomaterials, 28, 5009 (2007).CrossRefGoogle Scholar
  6. (6).
    S. Sarkar, K. M. Sales, G. Hamilton, and A. M. Seifalian, J. Biomed. Mater. Res., Part B, 82, 100 (2007).CrossRefGoogle Scholar
  7. (7).
    E. Shantsila, T. Watson, H.-F. Tse, and G. Y. Lip, J. Am. Coll. Cardiol., 3, 699 (2008).Google Scholar
  8. (8).
    T. Asahara and A. Kawamoto, Am. J. Physiol. Cell Physiol., 287, C572 (2004).Google Scholar
  9. (9).
    M. Avci-Adali, G. Ziemer, and H. P. Wendel, Biotechnol. Adv., 28, 119 (2010).CrossRefGoogle Scholar
  10. (10).
    A. N. Veleva, S. L. Cooper, and C. Patterson, Biotechnol. Bioeng., 98, 306 (2007).CrossRefGoogle Scholar
  11. (11).
    A. N. Veleva, D. E. Heath, S. L. Cooper, and C. Patterson, Biomaterials, 29, 3656 (2008).CrossRefGoogle Scholar
  12. (12).
    J. M. Heyligers, H. J. Verhagen, J. I. Rotmans, C. Weeterings, P. G. de Groot, F. L. Moll, and T. Lisman, J. Vasc. Surg., 43, 587 (2006).CrossRefGoogle Scholar
  13. (13).
    Q. Li, Z. Wang, S. Zhang, W. Zheng, Q. Zhao, J. Zhang, L. Wang, S. Wang, and D. Kong, Mater. Sci. Eng., C, 33, 1646 (2013).CrossRefGoogle Scholar
  14. (14).
    Y. Huang, S. Zhang, B. Niu, D. Wang, Z. Wang, S. Feng, H. Xu, D. Kong, and M. Qiao, Colloids Surf., B, 101, 361 (2013).CrossRefGoogle Scholar
  15. (15).
    Q. Ji, S. Zhang, J. Zhang, Z. Wang, J. Wang, Y. Cui, L. Pang, S. Wang, D. Kong, and Q. Zhao, Biomacromolecules, 14, 4099 (2013).CrossRefGoogle Scholar
  16. (16).
    J. Fang, J. Zhang, J. Du, Y. Pan, J. Shi, Y. Peng, W. Chen, L. Yuan, S.-H. Ye, and W. R. Wagner, ACS Appl. Mater. Interfaces, 8, 14442 (2016).CrossRefGoogle Scholar
  17. (17).
    Z. Chen, Q. Li, J. Chen, R. Luo, M. F. Maitz, and N. Huang, Mater. Sci. Eng., C, 60, 219 (2016).CrossRefGoogle Scholar
  18. (18).
    W. Wu, R. A. Allen, and Y. Wang, Nat. Med., 18, 1148 (2012).CrossRefGoogle Scholar
  19. (19).
    C. H. Mun, Y. Jung, S.-H. Kim, S.-H. Lee, H. C. Kim, I. K. Kwon, and S. H. Kim, Tissue Eng., Part A, 18, 1608 (2012).CrossRefGoogle Scholar
  20. (20).
    S. H. Kim, S. H. Kim, and Y. Jung, J. Control. Release, 206, 101 (2015).CrossRefGoogle Scholar
  21. (21).
    C. H. Mun, S.-H. Kim, Y. Jung, S.-H. Kim, A.-k. Kim, D.-I. Kim, and S. H. Kim, J. Bioact. Compat. Polym., 28, 233 (2013).CrossRefGoogle Scholar
  22. (22).
    T. G. Van Tienen, R. G. Heijkants, P. Buma, J. H. de Groot, A. J. Pennings, and R. P. Veth, Biomaterials, 23, 1731 (2002).CrossRefGoogle Scholar
  23. (23).
    M. Shafiq, D. Kong, and S. H. Kim, J. Biomed. Mater. Res., Part A, 105, 2670 (2017).CrossRefGoogle Scholar
  24. (24).
    M. Shafiq and S. H. Kim, Macromol. Res., 24, 986 (2016).CrossRefGoogle Scholar
  25. (25).
    M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res., Part A, 103, 2673 (2015).CrossRefGoogle Scholar
  26. (26).
    M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res., Part A, 104, 1352 (2016).CrossRefGoogle Scholar
  27. (27).
    J. I. Lim, S. I. Kim, and S. H. Kim, Colloids Surf. B: Biointerfaces, 103, 463 (2013).CrossRefGoogle Scholar
  28. (28).
    Z. Wang, Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Guo, D. Li, Y. Li, X. L. Zheng, Y. Zhu, D. Kong, and Q. Zhao, Biomaterials, 35, 5700 (2014).CrossRefGoogle Scholar
  29. (29).
    K. S. Jee, H. D. Park, K. D. Park, Y. H. Kim, and J-W. Shin. Biomacromolecules, 5, 1877 (2004).CrossRefGoogle Scholar
  30. (30).
    D. H. Go, Y. K. Joung, S. Y. Park, Y. D. Park, and K. D. Park, J. Biomed. Mater. Res. Part A, 86, 842 (2008).CrossRefGoogle Scholar
  31. (31).
    A. Benkaddour, K. Jradi, S. Robert, and C. Daneault. Nanomaterials, 3, 141 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Jongyoon Rhee
    • 1
    • 2
    • 3
  • Muhammad Shafiq
    • 2
    • 4
    • 5
  • Donghak Kim
    • 1
    • 2
  • Youngmee Jung
    • 2
  • Soo Hyun Kim
    • 1
    • 2
    • 4
    Email author
  1. 1.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea
  2. 2.Biomaterials Research CenterKorea Institute of Science and TechnologySeoulKorea
  3. 3.Meta Biomed Co. Ltd.Meta Beauty R&D CenterCheongju, ChungbukKorea
  4. 4.Department of Biomedical EngineeringKorea University of Science and TechnologySeoulKorea
  5. 5.Department of ChemistryPakistan Institute of Engineering & Applied Sciences (PIEAS)Nilore, IslamabadPakistan

Personalised recommendations