Advertisement

Macromolecular Research

, Volume 27, Issue 1, pp 48–54 | Cite as

Anticancer Activity of a New Chalcone Derivative-Loaded Polymeric Micelle

  • Young Jin Kim
  • Kang Pa Lee
  • Do Young Lee
  • Yun Tae Kim
  • Dongsoo Koh
  • Yoongho Lim
  • Myeong Sik YoonEmail author
Article
  • 69 Downloads

Abstract

Chalcones are hydrophobic polyphenols with extremely poor aqueous solubility. In this study, we prepared a new chalcone derivative-loaded nanoparticle (DPP-23-loaded NP) using a monomethoxy poly(ethylene glycol)-poly(D,L-lactide) copolymer which, in an aqueous environment, spontaneously forms a micellar formation with an average particle size of 20.8 nm. Exposure to various concentrations of DPP-23-loaded NP significantly diminished the cell viability of MCF-7 and MDA-MB-231 cells in a concentration-dependent manner. Our data show that DPP-23-loaded NP is a reliable drug delivery system, as observed by the fluorescein isothiocyanate (FITC) intensity accumulation in MDA-MB-231 cells.

Keywords

chalcone cancer target drug delivery system nanoparticles MDA-MB-231 cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. K. Mahapatra, V. Asati, and S. K. Bharti, Eur. J. Med. Chem., 92, 839 (2015).CrossRefGoogle Scholar
  2. (2).
    D. K. Mahapatra, and S. K. Bharti, Eur. J. Med. Chem., 98, 69 (2015).CrossRefGoogle Scholar
  3. (3).
    D. K. Mahapatra, and S. K. Bharti, Eur. J. Med. Chem., 101, 496 (2015).CrossRefGoogle Scholar
  4. (4).
    C. Wyns, K. van Steendam, B. Vanhoecke, D. Deforce, M. Bracke, and A. Heyerick, Mol. Nutr. Food Res., 56, 1688 (2012).CrossRefGoogle Scholar
  5. (5).
    Y. Zhang, B. Srinivasan, C. Xing, and J. Lu, Anticancer Res., 32, 3689 (2012).Google Scholar
  6. (6).
    Y. Pan, Y. Chen, X. Yu, J. Wang, L. Zhang, Y. He, Y. Zheng, and J. Zheng, Cell. Physiol. Biochem., 29, 949 (2012).CrossRefGoogle Scholar
  7. (7).
    N. K. Sahu, S. S. Balbhadra, J. Choudhary, and D. V. Kohli, Curr. Med. Chem., 19, 209 (2012).CrossRefGoogle Scholar
  8. (8).
    J. Shin, D. H. Shon, and H. S. Youn, Int. Immunopharmacol., 15, 38 (2013).CrossRefGoogle Scholar
  9. (9).
    T. D. Tran, T. T. Nguyen, T. H. Do, T. N. Huynh, C. D. Tran, and K. M. Thai, Molecules, 17, 6684 (2012).CrossRefGoogle Scholar
  10. (10).
    V. R. Yadav, S. Prasad, B. Sung, and B. B. Aggarwal, Int. Immunopharmacol., 11, 295 (2010).CrossRefGoogle Scholar
  11. (11).
    S. Y. Shin, J. M. Lee, M.S. Lee, D. S. Koh, H. R. Jung, Y. H. Lim, and Y. H. Lee, Clin. Cancer Res., 20, 4302 (2014).CrossRefGoogle Scholar
  12. (12).
    D. H. Lee, Y. J. Jung, D. Koh, Y. Lim, Y. H. Lee, and S. Y. Shin, Cancer Lett., 372, 1 (2016).CrossRefGoogle Scholar
  13. (13).
    L. Zhang, J. M. Chan, F. X. Gu, J. W. Rhee, A. Z. Wang, A. F. Radovic–Moreno, F. Alexis, R. Langer, and O. C. Farokhzad, ACS Nano, 2, 1696 (2008).CrossRefGoogle Scholar
  14. (14).
    M. Gou, X. Wei, K. Men, B. Wang, F. Luo, X. Zhao, Y. Wei, and Z. Qian, Curr. Drug Targets, 12, 1131 (2011).CrossRefGoogle Scholar
  15. (15).
    M. E. Davis, Z. G. Chen, and D. M. Shin, Nat. Rev. Drug Discov., 7, 771 (2008).CrossRefGoogle Scholar
  16. (16).
    Y. Mai and A. Eisenberg, Chem. Soc. Rev., 41, 5969 (2012).CrossRefGoogle Scholar
  17. (17).
    F. H. Schacher, P. A. Rupar, and I. Manners, Angew Chem. Int. Ed., 51, 7898 (2012).CrossRefGoogle Scholar
  18. (18).
    H. Suh, B. Jeong, R. Rathi, and S. W. Kim, J. Biomed. Mater. Res., 42, 331 (1998).CrossRefGoogle Scholar
  19. (19).
    X. Zhang, Y. Li, X. Chen, X. Wang, X. Xu, Q. Liang, J. Hu, and X. Jing, Biomaterials, 26, 2121 (2005).CrossRefGoogle Scholar
  20. (20).
    Y. Dong and S. S. Feng, Biomaterials, 25, 2843 (2004).CrossRefGoogle Scholar
  21. (21).
    F. Cui, Y. Li, S. Zhou, M. Jia, X. Yang, F. Yu, S. Ye, Z. Hou, and L. Xie, Nanoscale Res. Lett., 8, 301 (2013).CrossRefGoogle Scholar
  22. (22).
    K. P. Lee, J. E. Kim, W. H. Park, and H. Hong, Oncol. Lett., 11, 2619 (2016).CrossRefGoogle Scholar
  23. (23).
    S. Y. Shin, C. G. Kim, Y. J. Jung, Y. Lim, Y. H. Lee, Sci. Rep., 6, 34134 (2016).CrossRefGoogle Scholar
  24. (24).
    S. S. Feng, L. Mu, K. Y. Win, and G. Huang, Curr. Med. Chem., 11, 413 (2004).CrossRefGoogle Scholar
  25. (25).
    C. Gao, J. Pan, W. Lu, M. Zhang, L. Zhou, and J. Tian, Anticancer Drugs, 20, 807 (2009).CrossRefGoogle Scholar
  26. (26).
    R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi, J. Control. Release, 125, 193 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Young Jin Kim
    • 1
  • Kang Pa Lee
    • 3
  • Do Young Lee
    • 1
  • Yun Tae Kim
    • 1
  • Dongsoo Koh
    • 4
  • Yoongho Lim
    • 5
  • Myeong Sik Yoon
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutical EngineeringHoseo UniversityAsan, ChungnamKorea
  2. 2.The Research Institute for Basic SciencesHoseo UniversityAsanKorea
  3. 3.Department of Medical Science, School of MedicineKonkuk UniversitySeoulKorea
  4. 4.Department of Applied ChemistryDongduk Women’s UniversitySeoulKorea
  5. 5.Division of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea

Personalised recommendations