Macromolecular Research

, Volume 26, Issue 12, pp 1179–1184 | Cite as

Formation of a Micellar Pattern on Top of the Cylindrical Morphology in (PS)4-b-PLA Copolymer Thin Films

  • Ho-Joong Kim
  • Byoung-Ki ChoEmail author


Previously, our thin film study of a block copolymer (BCP) consisting of dibranched polystyrene (PS) and linear polylactide (PLA) demonstrated the thickness- dependent distribution of two different parallel cylindrical orientations, “(10)- on” and “(01)-on”. In this paper, we studied the thin film phase behavior of a more branched BCP in order to understand the effect of degree of branching on the thin film morphology. The BCP employed in this study is composed of tetrabranched PS and linear PLA blocks. The grazing incidence small angle X-ray scattering (GISAXS) analysis indicated that the thin films exclusively preferred the “(10)-on” orientation due to the better wettability of the PLA block on the SiO2 substrate. As a unique phenomenon, in contrast to the cylinder structure in the film interior, micellar domains were revealed on the top layer of the films thicker than 79 nm, as identified by atomic force microscopy. The appearance of micellar domains could be explained by the alleviation of the packing frustration of the highly branched BCP assembly at the film surface.


assembly branched block copolymer morphology thin films cylinder micelle 

Supplementary material

13233_2018_6155_MOESM1_ESM.pdf (128 kb)
Supporting Information


  1. (1).
    A. Jo, W. Joo, W.-H. Jin, H. Nam, and J.-K. Kim, Nat. Nanotechnol., 4, 727 (2009).CrossRefGoogle Scholar
  2. (2).
    Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, Nat. Mater., 6, 957 (2007).CrossRefGoogle Scholar
  3. (3).
    J. N. L. Albert, T. D. Bogart, R. L. Lewis, K. L. Beers, M. J. Fasolka, J. B. Hutchison, B. D. Vogt, and T. H. Epps, Nano Lett., 11, 1351 (2011).CrossRefGoogle Scholar
  4. (4).
    Y. Wang, M. Becker, Li. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christiansen, D. H. Kim, and M. Steinhart, Nano Lett., 9, 2384 (2009).CrossRefGoogle Scholar
  5. (5).
    S.-J. Jeong, H.-S. Moon, B.-H. Kim, J.-Y. Kim, J. Yu, S. Lee, M.-G. Lee, H. Choi, S.-O. Kim, ACS Nano, 4, 5181 (2010).CrossRefGoogle Scholar
  6. (6).
    I. Son, J. H. Kim, B. Lee, C. Kim, J. Y. Yoo, K. Hyun, J.-P. Wu, J. H. Lee, Macromol. Res., 24, 235 (2016).CrossRefGoogle Scholar
  7. (7).
    S. I. Yoo, B.-H. Sohn, Macromol. Res., 24, 292 (2016).CrossRefGoogle Scholar
  8. (8).
    I. W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York, 1998.Google Scholar
  9. (9).
    F. S. Bates, and G. H. Fredrickson, Ann. Rev. Phys. Chem., 41, 525 (1990).CrossRefGoogle Scholar
  10. (10).
    S. Foerster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, and W. Bras, Macromolecules, 27, 6922 (1994).CrossRefGoogle Scholar
  11. (11).
    J.-H. Ahn and W.-C. Zin, Macromolecules, 33, 641 (2000).CrossRefGoogle Scholar
  12. (12).
    K.-Y. Heo, J.-W. Yoon, S.-W. Jin, J.-H. Kim, K.-W. Kim, T.-J. Shin, B.-H. Chung, T.-Y. Chang, and M.-H. Ree, J. Appl. Crystallogr., 41, 281 (2008).CrossRefGoogle Scholar
  13. (13).
    M.-I. Kim, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Hasegawa, K. Ito, and M. Takenaka, Macromolecules, 42, 5266 (2009).CrossRefGoogle Scholar
  14. (14).
    M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M.-I. Kim, and H. Hasegawa, Macromolecules, 40, 4399 (2007).CrossRefGoogle Scholar
  15. (15).
    M. W. Matsen, Macromolecules, 28, 5765 (1995).CrossRefGoogle Scholar
  16. (16).
    M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091 (1996).CrossRefGoogle Scholar
  17. (17).
    M. W. Matsen, J. Phys. Condens. Matter, 14, R21 (2002).Google Scholar
  18. (18).
    A. Knoll, L. Tsarkova, and G. Krausch, Nano Lett., 7, 843 (2007).CrossRefGoogle Scholar
  19. (19).
    G. E. Stein, E. J. Kramer, X. F. Li, and J. Wang, Macromolecules, 40, 2453 (2007).CrossRefGoogle Scholar
  20. (20).
    M. W. Matsen, Macromolecules, 43, 1671 (2010).CrossRefGoogle Scholar
  21. (21).
    M. W. Matsen, Macromolecules, 45, 2161 (2012).CrossRefGoogle Scholar
  22. (22).
    J.-G. Ha, J. Song, J.-K. Lee, B.-K. Cho, and W.-C. Zin, Chem. Commun., 48, 3418 (2012).CrossRefGoogle Scholar
  23. (23).
    J. Song, H.-Y. Kim, and B.-K. Cho, Bull. Korean Chem. Soc., 28, 1771 (2007).CrossRefGoogle Scholar
  24. (24).
    R. Olayo-Valles, S. Guo, M. S. Lund, C. Leighton, and M. A. Hillmyer, Macromolecules, 38, 10101 (2005).CrossRefGoogle Scholar
  25. (25).
    J. Yoon, S. Y. Yang, B. Lee, W. Joo, K. Heo, J. K. Kim, and M. Ree, J. Appl. Cryst., 40, 305 (2007).CrossRefGoogle Scholar
  26. (26).
    G. M. Grason and R. D. Kamien, Macromolecules, 37, 7371 (2004).CrossRefGoogle Scholar
  27. (27).
    G. M. Grason, Phys. Rep., 433, 1 (2006).CrossRefGoogle Scholar
  28. (28).
    P. D. Olmsted and S. T. Milner, Macromolecules, 31, 4011 (1998).CrossRefGoogle Scholar
  29. (29).
    K. E. Sohn, K. Kojio, B. C. Berry, A. Karim, R. C. Coffin, G. C. Bazan, E. J. Kramer, M. Sprung, and J. Wang, Macromolecules, 43, 3406 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryDankook UniversityChungnamKorea
  2. 2.Department of ChemistryChosun UniversityGwangjuKorea

Personalised recommendations