Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1103–1107 | Cite as

Fundamental and Practical Limits of Achieving Artificial Magnetism and Effective Optical Medium by Using Self-Assembly of Metallic Colloidal Clusters

  • Kwangjin Kim
  • Ji-Hyeok Huh
  • Doyoung Yu
  • Seungwoo LeeEmail author
Article
  • 117 Downloads

Abstract

The self-assembly of metallic colloidal clusters (so called plasmonic metamolecules) has been viewed as a versatile, but highly effective approach for the materialization of the metamaterials exhibiting artificial magnetism at optical frequencies (including visible and near infrared (NIR) regimes). Indeed, several proofs of concepts of plasmonic metamolecules have been successfully demonstrated in both theoretical and experimental ways. Nevertheless, this self-assembly strategy has barely been used and still remains an underutilized method. For example, the self-assembly and optical utilization of the plasmonic metamolecules have been limited to the discrete unit of the structure; the materialization of effective optical medium made of plasmonic metamolecules is highly challenging. In this work, we theoretically exploited the practical limits of self-assembly technology for the fabrication of optical magnetic metamaterials.

Keywords

colloids self-assembly plasmonic metamolecules magnetism 

References

  1. (1).
    Y. J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G. R. Yi, ACS Nano, 7, 11064 (2013).CrossRefGoogle Scholar
  2. (2).
    M. N. O’Brien, M. R. Jones, K. A. Brown, and C. A. Mirkin, J. Am. Chem. Soc., 136, 7603 (2014).CrossRefGoogle Scholar
  3. (3).
    J. Lee, J.-H. Huh, K. Kim, and S. Lee, Adv. Funct. Mater., 28, 1707309 (2018).CrossRefGoogle Scholar
  4. (4).
    J.-H. Huh, J. Lee, and S. Lee, ACS Photonics, 5, 413 (2018).CrossRefGoogle Scholar
  5. (5).
    S. Lee, Opt. Express, 23, 28170 (2015).CrossRefGoogle Scholar
  6. (6).
    K. Kim, S. Yoo, J.-H. Huh, Q. Park, and S. Lee, ACS Photonics, 4, 2298 (2017).CrossRefGoogle Scholar
  7. (7).
    C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, Phys. Rev. Lett., 99, 017401 (2007).CrossRefGoogle Scholar
  8. (8).
    A. Vallecchi, M. Albani, and F. Capolino, Opt. Express, 19, 2754 (2011).CrossRefGoogle Scholar
  9. (9).
    A. Alù, A Salandrino, N. Engheta, Opt. Express, 14, 1557 (2006).CrossRefGoogle Scholar
  10. (10).
    A. Alù, and N. Engheta, Opt. Express, 17, 5723 (2009).CrossRefGoogle Scholar
  11. (11).
    Y. A. Urzhumov, G. Shvets, J. Fan, F. Capasso, D. Brandl, and P. Nordlander, Opt. Express, 15, 14129 (2007).CrossRefGoogle Scholar
  12. (12).
    K. J. Park, J.-H. Huh, D.-W. Jung, J.-S. Park, G. H. Choi, G. Lee, P. J. Yoo, H.- G. Park, G.-R. Yi, and S. Lee, Sci. Rep., 7, 6045 (2017).CrossRefGoogle Scholar
  13. (13).
    S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, ACS Nano, 5, 6586 (2011).CrossRefGoogle Scholar
  14. (14).
    S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, Nano Lett., 13, 4137 (2013).CrossRefGoogle Scholar
  15. (15).
    M. Fruhnert, S. Muhlig, F. Lederer, and C. Rockstuhl, Phys. Rev. B, 89, 075408 (2014).CrossRefGoogle Scholar
  16. (16).
    S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J. B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, Mater. Horiz., 3, 596 (2016).CrossRefGoogle Scholar
  17. (17).
    S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, Opt. Express, 19, 9607 (2011).CrossRefGoogle Scholar
  18. (18).
    S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, Nanophotonics, 2, 211 (2013).CrossRefGoogle Scholar
  19. (19).
    P. B. Johnson, and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).CrossRefGoogle Scholar
  20. (20).
    R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, Nat. Commun., 7, 10362 (2016).CrossRefGoogle Scholar
  21. (21).
    S. Yoo and Q.-H. Park, Opt. Express, 20, 16480 (2012).CrossRefGoogle Scholar
  22. (22).
    P. N. Pusey and W. van Megen, Nature, 320, 340 (1986).CrossRefGoogle Scholar
  23. (23).
    N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, Nat. Commun., 5, 3809 (2014).CrossRefGoogle Scholar
  24. (24).
    B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater., 9, 707 (2010).CrossRefGoogle Scholar
  25. (25).
    F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, Nat. Nanotechnol., 8, 95 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Kwangjin Kim
    • 1
    • 2
  • Ji-Hyeok Huh
    • 1
    • 2
  • Doyoung Yu
    • 1
    • 2
  • Seungwoo Lee
    • 2
    Email author
  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonKorea
  2. 2.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea

Personalised recommendations