Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1173–1178 | Cite as

Hexagonal Array Patterned PMMA Buffer Layer for Efficient Hole Transport and Tailored Interfacial Properties of FTO-Based Organic Solar Cells

  • Seung Hun Roh
  • Jung Kyu KimEmail author
Article
  • 135 Downloads

Abstract

Organic photovoltaics (OPVs) have attracted substantial attention due to their solution-based low-cost processability. However, challenges remain with the OPV module in terms of reducing the process cost and enhancing the stability. For example, more than half of the process cost can be consumed by the indium tin oxide (ITO) substrate. Further, the indium dopant can be easily diffused out of ITO, thereby deteriorating the device stability. Here, a hexagonal array patterned poly(methyl methacrylate) (PMMA) buffer layer is introduced between the fluorine doped tin oxide (FTO) substrate and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) so as to achieve ITO-free-OPVs with enhanced power conversion efficiency and long-term stability. The rough surface property of FTO is amended by the patterned PMMA layer via nanoimprinting lithography using a rigiflex imprinting mold with the hexagonal pillar pattern array. The surface morphology and film properties of the PMMA layer are tailored by the optimized O2-plasma treatment. Consequently, the patterned PMMA/FTO ameliorates the morphology and interfacial properties of the PEDOT:PSS layer, which contributes to enhancing the device performance. Over 8% higher power conversion efficiency is achieved in comparison to OPVs with bare ITO. In addition, the patterned PMMA/FTO prevents the diffusion of heavy metal components, thereby higher stability is achieved in comparison to OPVs with bare ITO.

Keywords

nanoimprinting lithography poly(methyl methacrylate) PEDOT:PSS organic solar cells ITO free 

References

  1. (1).
    N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science, 258, 1474 (1992).CrossRefGoogle Scholar
  2. (2).
    Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, Nat. Photonics, 9, 174 (2015).CrossRefGoogle Scholar
  3. (3).
    G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995).CrossRefGoogle Scholar
  4. (4).
    W. Kim, S. Kim, I. Kang, M. S. Jung, S. J. Kim, J. K. Kim, S. M. Cho, J.-H. Kim, and J. H. Park, ChemSusChem, 9, 1042 (2016).CrossRefGoogle Scholar
  5. (5).
    J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, Adv. Mater., 27, 1035 (2015).CrossRefGoogle Scholar
  6. (6).
    M. Zafar, J.-Y. Yun, and D.-H. Kim, Korean J. Chem. Eng., 35, 567 (2018).CrossRefGoogle Scholar
  7. (7).
    M. Zafar, J.-Y. Yun, and D.-H. Kim, Korean J. Chem. Eng., 34, 1504 (2017).CrossRefGoogle Scholar
  8. (8).
    J. Hou, O. Inganäs, R. H. Friend, and F. Gao, Nat. Mater., 17, 119 (2018).CrossRefGoogle Scholar
  9. (9).
    Z. Xiao, X. Jia, and L. Ding, Sci. Bull., 62, 1562 (2017).CrossRefGoogle Scholar
  10. (10).
    L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, Science, 361, 1094 (2018).CrossRefGoogle Scholar
  11. (11).
    A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science, 352 (2016).Google Scholar
  12. (12).
    W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science, 348, 1234 (2015).CrossRefGoogle Scholar
  13. (13).
    J. K. Kim, S. U. Chai, Y. Ji, B. Levy-Wendt, S. H. Kim, Y. Yi, T. F. Heinz, J. K. Nørskov, J. H. Park, and X. Zheng, Adv. Energy Mater., 8, 1801717 (2018).CrossRefGoogle Scholar
  14. (14).
    I. Burgués-Ceballos, M. Stella, P. Lacharmoise, and E. Martínez-Ferrero, J. Mater. Chem. A, 2, 17711 (2014).CrossRefGoogle Scholar
  15. (15).
    J. E. Carlé, M. Helgesen, O. Hagemann, M. Hösel, I. M. Heckler, E. Bundgaard, S. A. Gevorgyan, R. R. Søndergaard, M. Jørgensen, R. García- Valverde, S. Chaouki-Almagro, J. A. Villarejo, and F. C. Krebs, Joule, 1, 274 (2017).CrossRefGoogle Scholar
  16. (16).
    B. Azzopardi, C. J. M. Emmott, A. Urbina, F. C. Krebs, J. Mutale, and J. Nelson, Energy Environ. Sci., 4, 3741 (2011).CrossRefGoogle Scholar
  17. (17).
    C. J. M. Emmott, J. A. Röhr, M. Campoy-Quiles, T. Kirchartz, A. Urbina, N. J. Ekins-Daukes, and J. Nelson, Energy Environ. Sci., 8, 1317 (2015).CrossRefGoogle Scholar
  18. (18).
    D. Angmo and F. C. Krebs, J. Appl. Polymer Sci., 129, 1 (2013).CrossRefGoogle Scholar
  19. (19).
    S. B. Dkhil, M. Pfannmöller, M. I. Saba, M. Gaceur, H. Heidari, C. Videlot- Ackermann, O. Margeat, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, A. Mattoni, S. Bals, and J. Ackermann, Adv. Energy Mater., 7, 1601486 (2017).CrossRefGoogle Scholar
  20. (20).
    C.-P. Chen, I. C. Lee, Y.-Y. Tsai, C.-L. Huang, Y.-C. Chen, and G.-W. Huang, Org. Electron., 62, 95 (2018).CrossRefGoogle Scholar
  21. (21).
    M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, Adv. Energy Mater., 8, 1701832 (2018).CrossRefGoogle Scholar
  22. (22).
    J. K. Kim, S. J. Kim, M. J. Park, S. Bae, S.-P. Cho, Q. G. Du, D. H. Wang, J. H. Park, and B. H. Hong, Sci. Rep., 5, 14276 (2015).CrossRefGoogle Scholar
  23. (23).
    J. K. Kim, M. J. Park, S. J. Kim, D. H. Wang, S. P. Cho, S. Bae, J. H. Park, and B. H. Hong, ACS Nano, 7, 7207 (2013).CrossRefGoogle Scholar
  24. (24).
    D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, and A. J. Heeger, Angew. Chem. Int. Ed., 52, 2874 (2013).CrossRefGoogle Scholar
  25. (25).
    D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, Adv. Energy Mater., 2, 1319 (2012).CrossRefGoogle Scholar
  26. (26).
    T.-W. Lee and Y. Chung, Adv. Funct. Mater., 18, 2246 (2008).CrossRefGoogle Scholar
  27. (27).
    J. K. Kim, G. Veerappan, N. Heo, D. H. Wang, and J. H. Park, J. Phys. Chem. C, 118, 22672 (2014).CrossRefGoogle Scholar
  28. (28).
    J. K. Kim, I. Park, W. Kim, D. H. Wang, D.-G. Choi, Y. S. Choi, and J. H. Park, ChemSusChem, 7, 1957 (2014).CrossRefGoogle Scholar
  29. (29).
    J. K. Kim, H. S. Park, D. K. Rhee, S.-J. Ham, K.-J. Lee, P. J. Yoo, and J. H. Park, J. Mater. Chem., 22, 7718 (2012).CrossRefGoogle Scholar
  30. (30).
    J. Y. Lee, Synth. Met., 156, 537 (2006).CrossRefGoogle Scholar
  31. (31).
    A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater., 10, 859 (1998).CrossRefGoogle Scholar
  32. (32).
    U. Mehmood, S.-U. Rahman, K. Harrabi, I. A. Hussein, and B. V. S. Reddy, Adv. Mater. Sci. Eng., 2014, 12 (2014).CrossRefGoogle Scholar
  33. (33).
    P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun., 4, 2761 (2013).CrossRefGoogle Scholar
  34. (34).
    D. H. Wang, A. K. K. Kyaw, V. Gupta, G. C. Bazan, and A. J. Heeger, Adv. Energy Mater., 3, 1161 (2013).CrossRefGoogle Scholar
  35. (35).
    X. Shen, L. Chen, J. Pan, Y. Hu, S. Li, and J. Zhao, Nanoscale Res. Lett., 11, 532 (2016).CrossRefGoogle Scholar
  36. (36).
    J. Y. Oh, M. Shin, J. B. Lee, J.-H. Ahn, H. K. Baik, and U. Jeong, ACS Appl. Mater. Interfaces, 6, 6954 (2014).CrossRefGoogle Scholar
  37. (37).
    U. Lang, E. Müller, N. Naujoks, and J. Dual, Adv. Funct. Mater., 19, 1215 (2009).CrossRefGoogle Scholar
  38. (38).
    W. Kim, M. S. Jung, S. Lee, Y. J. Choi, J. K. Kim, S. U. Chai, W. Kim, D.-G. Choi, H. Ahn, J. H. Cho, D. Choi, H. Shin, D. Kim, and J. H. Park, Adv. Energy Mater., 8, 1702369 (2018).CrossRefGoogle Scholar
  39. (39).
    B. Cheng, J. Zhao, L. Xiao, Q. Cai, R. Guo, Y. Xiao, and S. Lei, Sci. Rep., 5, 17859 (2015).CrossRefGoogle Scholar
  40. (40).
    H. Lee, E. Puodziukynaite, Y. Zhang, J. C. Stephenson, L. J. Richter, D. A. Fischer, D. M. DeLongchamp, T. Emrick, and A. L. Briseno, J. Am. Chem. Soc., 137, 540 (2015).CrossRefGoogle Scholar
  41. (41).
    J. Peng, Y. Wu, W. Ye, D. A. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H. T. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M. N. Lockrey, K. J. Weber, K. R. Catchpole, and T. P. White, Energy Environ. Sci., 10, 1792 (2017).CrossRefGoogle Scholar
  42. (42).
    J. K. Kim, K. Shin, D.-G. Choi, and J. H. Park, Mater. Express, 1, 245 (2011).CrossRefGoogle Scholar
  43. (43).
    J. K. Kim, X. Shi, M. J. Jeong, J. Park, H. S. Han, S. H. Kim, Y. Guo, T. F. Heinz, S. Fan, C.-L. Lee, J. H. Park, and X. Zheng, Adv. Energy Mater., 8, 1701765 (2018).CrossRefGoogle Scholar
  44. (44).
    M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. van Breemen, C. Girotto, E. Voroshazi, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 95, 1253 (2011).CrossRefGoogle Scholar
  45. (45).
    J. K. Kim, W. Kim, D. H. Wang, H. Lee, S. M. Cho, D.-G. Choi, and J. H. Park, Langmuir, 29, 5377 (2013).CrossRefGoogle Scholar
  46. (46).
    J. Chai, F. Lu, B. Li, and D. Y. Kwok, Langmuir, 20, 10919 (2004).CrossRefGoogle Scholar
  47. (47).
    C.-L. Choong, M.-B. Shim, B.-S. Lee, S. Jeon, D.-S. Ko, T.-H. Kang, J. Bae, S. H. Lee, K.-E. Byun, J. Im, Y. J. Jeong, C. E. Park, J.-J. Park, and U.-I. Chung, Adv. Mater., 26, 3451 (2014).CrossRefGoogle Scholar
  48. (48).
    M. Deepa, A. K. Srivastava, K. N. Sood, and A. V. Murugan, J. Electrochem. Soc., 155, D703 (2008).Google Scholar
  49. (49).
    W. Qin, W. Yu, W. Zi, X. Liu, T. Yuan, D. Yang, S. Wang, G. Tu, J. Zhang, F. S. Liu, and C. Li, J. Mater. Chem. A, 2, 15303 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonKorea

Personalised recommendations