Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1085–1094 | Cite as

DNA-Coated Microspheres and Their Colloidal Superstructures

  • Jeongbin Moon
  • In-Seong Jo
  • Etienne Ducrot
  • Joon Suk Oh
  • David J. Pine
  • Gi-Ra YiEmail author
Review
  • 185 Downloads

Abstract

Reversible and specific interaction between single-stranded DNA on colloidal particles have opened up a new path way of building up colloidal superstructures. DNA-coated microspheres can be bound with other particles with complementary DNA brushes below the melting temperature and can be unbound above the melting temperature. However, due to their random Brownian motion, the particles form random (or glassy) structures in most cases or small crystals when cooling is extremely slow. Therefore, toward programmed colloidal superstructures of DNA-coated microspheres, they should reconfigure their kinetically trapped random structure to equilibrium crystalline structures. While nanoparticles can be rearranged into a crystalline structure by a simple conformational change of relatively long DNA brush, microspheres with short DNA brushes cannot be rearranged only by a conformational change of brush. Instead, sub-diffusion of bound DNA-coated microspheres is necessary which can be possible only with uniform DNA coating with high areal density on microspheres. In this article, we have reviewed methods for the synthesis of high-density DNA-coated microspheres and their assembly into crystalline structures. We also discuss future research direction of DNA-coated microspheres.

Keywords

DNA coating microsphere self-assembly DNA hybridization sub-diffusion crystallization 

References

  1. (1).
    J. D. Watson and F. H. C. Crick, Nature, 171, 737 (1953).CrossRefGoogle Scholar
  2. (2).
    N. C. Seeman, Nanotechnology, 2, 149 (1991).CrossRefGoogle Scholar
  3. (3).
    Y. Zhang and N. C. Seeman, J. Am. Chem. Soc., 116, 1661 (1994).CrossRefGoogle Scholar
  4. (4).
    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature, 382, 607 (1996).CrossRefGoogle Scholar
  5. (5).
    S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, Nature, 451, 553 (2008).CrossRefGoogle Scholar
  6. (6).
    R. J. Macfarlane, B. Lee, H. D. Hill, A. J. Senesi, S. Seifert, and C. A. Mirkin, Proc. Natl Acad. Sci. USA, 106, 10493 (2009).CrossRefGoogle Scholar
  7. (7).
    R. J. Macfarlane, M. R. Jones, A. J. Senesi, K. L. Young, B. Lee, J. Wu, and C. A. Mirkin, Angew. Chem. Int. Edit., 49(27), 4589 (2010).CrossRefGoogle Scholar
  8. (8).
    M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, Nat. Mater., 9(11), 913 (2010).CrossRefGoogle Scholar
  9. (9).
    R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, Science, 334, 204 (2011).CrossRefGoogle Scholar
  10. (10).
    E. Auyeung, J. I. Cutler, R. J. Macfarlane, M. R. Jones, J. Wu, G. Liu, K. Zhang, K. D. Osberg, and C. A. Mirkin, Nat. Nanotechnol., 7, 24 (2012).CrossRefGoogle Scholar
  11. (11).
    R. J. Macfarlane, M. R. Jones, B. Lee, E. Auyeung, and C. A. Mirkin, Science, 341, 1222 (2013).CrossRefGoogle Scholar
  12. (12).
    E. Auyeung, T. I. Li, A. J. Senesi, A. L. Schmucker, B. C. Pals, M. O. de La Cruz, and C. A. Mirkin, Nature, 505, 73 (2014).CrossRefGoogle Scholar
  13. (13).
    H. Lin, S. Lee, L. Sun, M. Spellings, M. Engel, S. C. Glotzer, and C. A. Mirkin, Science, 355, 931 (2017).CrossRefGoogle Scholar
  14. (14).
    J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, and H. Yan, Science, 323, 112 (2009).CrossRefGoogle Scholar
  15. (15).
    X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, J. Am. Chem. Soc., 134, 149 (2011).Google Scholar
  16. (16).
    A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature, 483, 311 (2012).CrossRefGoogle Scholar
  17. (17).
    W. Liu, M. Tagawa, H. L. Xin, T, Wang, H. Emamy, H. Li, K. G. Yager, F. W. Starr A.V. Tkachenko, and O. Gang, Science, 351, 582 (2016).CrossRefGoogle Scholar
  18. (18).
    E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987).CrossRefGoogle Scholar
  19. (19).
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett., 65, 3152 (1990).CrossRefGoogle Scholar
  20. (20).
    P. Bartlett, R. H. Ottewill, and P. N. Pusey, Phys. Rev. Lett., 68, 3801 (1992).CrossRefGoogle Scholar
  21. (21).
    M. E. Leunissen, C. G. Christova, A. P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, M. Dijkstra, R. van Roji, and A. van Blaaderen, Nature, 437, 235 (2005).CrossRefGoogle Scholar
  22. (22).
    M. Maldovan and E. L. Thomas, Nat. Mater., 3, 593 (2004).CrossRefGoogle Scholar
  23. (23).
    A. Garcia-Adeva, New J. Phys., 8, 86 (2006).CrossRefGoogle Scholar
  24. (24).
    O. Stenull, C. L. Kane, and T. C. Lubensky, Phys. Rev. Lett., 117, 068001 (2016).CrossRefGoogle Scholar
  25. (25).
    A. A. Zadpoor, Materials Horizons, 3, 371 (2016).CrossRefGoogle Scholar
  26. (26).
    Z. Zhang, A. S. Keys, T. Chen, and S. C. Glotzer, Langmuir, 21, 11547 (2005).CrossRefGoogle Scholar
  27. (27).
    F. Romano, E. Sanz, and F. Sciortino, J. Chem. Phys., 132, 184501 (2010).CrossRefGoogle Scholar
  28. (28).
    Y. Wang, Y. Wang, D. R. Breed, V. N. Manoharan, L. Feng, A. D. Hollingsworth, M. Weck, and D. J. Pine, Nature, 491, 51 (2012).CrossRefGoogle Scholar
  29. (29).
    F. Smallenburg, L. Filion, and F. Sciortino, Nat. Phys., 10, 653 (2014).CrossRefGoogle Scholar
  30. (30).
    B. T. Holland, C. F. Blanford, and A. Stein, Science, 281, 538 (1998).CrossRefGoogle Scholar
  31. (31).
    Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater., 12, 693 (2000).CrossRefGoogle Scholar
  32. (32).
    P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater., 11, 2132 (1999).CrossRefGoogle Scholar
  33. (33).
    S. Wong, V. Kitaev, and G. A. Ozin, J. Am. Chem. Soc., 125, 15589 (2003).CrossRefGoogle Scholar
  34. (34).
    S. Connolly and D. Fitzmaurice, Adv. Mater., 11, 1202 (1999).CrossRefGoogle Scholar
  35. (35).
    S. Mann, W. Shenton, M. Li, S. Connolly, and D. Fitzmaurice, Adv. Mater., 12, 147 (2000).CrossRefGoogle Scholar
  36. (36).
    A. L. Hiddessen, S. D. Rodgers, D. A. Weitz, and D. A. Hammer, Langmuir 16, 9744 (2000).CrossRefGoogle Scholar
  37. (37).
    V. T. Milam, A. L. Hiddessen, J. C. Crocker, D. J. Graves, and D. A. Hammer, Langmuir, 19, 10317 (2003).CrossRefGoogle Scholar
  38. (38).
    L. Di Michele, F. Varrato, J. Kotar, S. H. Nathan, G. Foffi, and E. Eiser, Nat. Commun., 4, 2007 (2013).CrossRefGoogle Scholar
  39. (39).
    A. J. Kim, P. L. Biancaniello, and J. C. Crocker, Langmuir, 22, 1991 (2006).CrossRefGoogle Scholar
  40. (40).
    S. Angioletti-Uberti, B. M. Mognetti, and D. Frenkel, Nat. Mater., 11, 5182 (2012).CrossRefGoogle Scholar
  41. (41).
    P. L. Biancaniello, A. J. Kim, and J. C. Crocker, Phys. Rev. Lett., 94, 058302 (2005).CrossRefGoogle Scholar
  42. (42).
    P. L. Biancaniello, J. C. Crocker, D. A. Hammer, and V. T. Milam, Langmuir, 23, 2688 (2007).CrossRefGoogle Scholar
  43. (43).
    A. J. Kim, R. Scarlett, P. L. Biancaniello, T. Sinno, and J. C. Crocker, Nat. Mater. 8, 52 (2009).CrossRefGoogle Scholar
  44. (44).
    M. E. Leunissen and D. Frenkel, J. Chem. Phys. 134, 084702 (2011).CrossRefGoogle Scholar
  45. (45).
    W. B. Rogers and J. C. Crocker, Proc. Natl Acad. Sci. USA, 108, 15687 (2011).CrossRefGoogle Scholar
  46. (46).
    M. T. Casey, R. T. Scarlett, W. B. Rogers, I. Jenkins, T. Sinno, and J. C. Crocker, Nat. Commun., 3, 1209 (2012).CrossRefGoogle Scholar
  47. (47).
    W. B. Rogers, T. Sinno, and J. C. Crocker, Soft Matter, 9, 6412 (2013).CrossRefGoogle Scholar
  48. (48).
    W. B. Rogers and V. N. Manoharan, Science, 347, 639 (2015).CrossRefGoogle Scholar
  49. (49).
    L. Feng, J. Romulus, M. Li, R. Sha, J. Royer, K. T. Wu, Q. Xu, N. C. Seeman, M. Weck, and P. M. Chaikin, Nat. Mater., 12, 747 (2013).CrossRefGoogle Scholar
  50. (50).
    C. M. Soto, A. Srinivasan, and B. R. Ratna, J. Am. Chem. Soc., 124, 8508 (2002).CrossRefGoogle Scholar
  51. (51).
    P. H. Rogers, E. Michel, C. A. Bauer, S. Vanderet, D. Hansen, B. K. Roberts, A. Calvez, J. B. Crews, K. O. Lau, A. Wood, D. J. Pine, and P. V. Schwartz, Langmuir, 21, 5562 (2005).CrossRefGoogle Scholar
  52. (52).
    Y. Wang, Y. Wang, X. Zheng, É. Ducrot, J. S. Yodh, M. Weck, and D. J. Pine, Nat. Commun., 6, 7253 (2015).CrossRefGoogle Scholar
  53. (53).
    Y. Wang, Y. Wang, X. Zheng, É. Ducrot, M. G. Lee, G. R. Yi, and D. J. Pine, J. Am. Chem. Soc., 137, 10760 (2015).CrossRefGoogle Scholar
  54. (54).
    N. J. Agard, J. A. Prescher, and C. R. Bertozzi, J. Am. Chem. Soc., 126, 15046 (2004).CrossRefGoogle Scholar
  55. (55).
    A. J. Kim, V. N. Manoharan, and J. C. Crocker, J. Am. Chem. Soc., 127, 1592 (2005).CrossRefGoogle Scholar
  56. (56).
    J. S. Oh, Y. Wang, D. J. Pine, and G. R. Yi, Chem. Mater., 27, 8337 (2015).CrossRefGoogle Scholar
  57. (57).
    S. Mornet, O. Lambert, E. Duguet, and A. Brisson, Nano Lett., 5, 281 (2005).CrossRefGoogle Scholar
  58. (58).
    S. A. van der Meulen, and M. E. Leunissen, J. Am. Chem. Soc., 135, 15129 (2013).CrossRefGoogle Scholar
  59. (59).
    L. Feng, L. L. Pontani, R. Dreyfus, P. M. Chaikin, and J. Brujic, Soft Matter, 9, 9816 (2013).CrossRefGoogle Scholar
  60. (60).
    D. Joshi, D. Bargteil, A. Caciagli, J. Burelbach, Z. Xing, A. S. Nunes, and E. Eiser, Sci. Adv., 2, e1600881 (2016).Google Scholar
  61. (61).
    S. A. van der Meulen, G. Helms, and M. Dogterom, J. Phys. Condensed Matter, 27, 233101 (2015).CrossRefGoogle Scholar
  62. (62).
    I. Chakraborty, V. Meester, C. van der Wel, and D. J. Kraft, Nanoscale, 9, 7814 (2017).CrossRefGoogle Scholar
  63. (63).
    C. van der Wel, G. L. van de Stolpe, R. W. Verweij, and D. J. Kraft, J. Phys. Condens. Matter, 30, 094005 (2018).CrossRefGoogle Scholar
  64. (64).
    M. Y. B. Zion, X. He, C. C. Maass, R. Sha, N. C. Seeman, and P. M. Chaikin, Science, 358, 633 (2017).CrossRefGoogle Scholar
  65. (65).
    Y. Zhang, X. He, R. Zhuo, R. Sha, J. Brujic, N. C. Seeman, and P. M. Chaikin, Proc. Natl. Acad. Sci. U.S.A., 201718511 (2018).Google Scholar
  66. (66).
    M. P. Valignat, O. Theodoly, J. C. Crocker, W. B. Russel, and P. M. Chaikin, Proc. Natl. Acad. Sci. U.S.A., 102, 4225 (2005).CrossRefGoogle Scholar
  67. (67).
    R. Dreyfus, M. E. Leunissen, R. Sha, A. V. Tkachenko, N. C. Seeman, D. J. Pine, and P. M. Chaikin, Phys. Rev. Lett., 102, 048301 (2009).CrossRefGoogle Scholar
  68. (68).
    R. Dreyfus, M. E. Leunissen, R. Sha, A. V. Tkachenko, N. C. Seeman, D. J. Pine, and P. M. Chaikin, Phys. Rev. E, 81, 041404 (2010).CrossRefGoogle Scholar
  69. (69).
    B. M. Mognetti, P. Varilly, S. Angioletti-Uberti, F. J. Martinez-Veracoechea, J. Dobnikar, M. E. Leunissen, and D. Frenkel, Proc. Natl. Acad. Sci. U.S.A., 109, E378 (2012).Google Scholar
  70. (70).
    Q. Xu, L. Feng, R. Sha, N. C. Seeman, and P. M. Chaikin, Phys. Rev. Lett., 106, 228102 (2011).CrossRefGoogle Scholar
  71. (71).
    S. Angioletti-Uberti, B. M. Mognetti, and D. Frenkel, Phys. Chem. Chem. Phys., 18, 6373 (2016).CrossRefGoogle Scholar
  72. (72).
    W. B. Rogers, W. M. Shih, and V. N. Manoharan, Nat. Rev. Mater., 1, 16008 (2016).CrossRefGoogle Scholar
  73. (73).
    V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science, 301, 483 (2003).CrossRefGoogle Scholar
  74. (74).
    D. J. Kraft, W. S. Vlug, C. M. Van Kats, A. van Blaaderen, A. Imhof, and W. K. Kegel, J. Am. Chem. Soc., 131, 1182 (2009).CrossRefGoogle Scholar
  75. (75).
    S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine, Nature, 464, 575 (2010).CrossRefGoogle Scholar
  76. (76).
    A. Kuijk, A. van Blaaderen, and A. Imhof, J. Am. Chem. Soc., 133, 2346 (2011).CrossRefGoogle Scholar
  77. (77).
    S. Sacanna, L. Rossi, and D. J. Pine, J. Am. Chem. Soc., 134, 6112 (2012).CrossRefGoogle Scholar
  78. (78).
    S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S. H. Kim, D. J. Pine, and G. R. Yi, Nat. Commun., 4, 1688 (2013).CrossRefGoogle Scholar
  79. (79).
    M. Youssef, T. Hueckel, G. R. Yi, and S. Sacanna, Nat. Commun., 7, 12216 (2016).CrossRefGoogle Scholar
  80. (80).
    Z. Gong, T. Hueckel, G. R. Yi, and S. Sacanna, Nature, 550, 234 (2017).CrossRefGoogle Scholar
  81. (81).
    Y. Wang, J. T. McGinley, and J. C. Crocker, Langmuir, 33, 3080 (2017).CrossRefGoogle Scholar
  82. (82).
    I. S. Jo, J. S. Oh, S. H. Kim, D. J. Pine, and G. R. Yi, Chem. Commun., 54, 8328 (2018).CrossRefGoogle Scholar
  83. (83).
    J. H. Kim, H. J. Hwang, J. S. Oh, S. Sacanna, and G. R. Yi, J. Am. Chem. Soc., 140, 9230 (2018).CrossRefGoogle Scholar
  84. (84).
    Q.-Y. Lin, J. A. Mason, Z. Li, W. Zhou, M. N. O’Brien, K. A. Brown, M. R. Jones, S. Butun, B. Lee, V. P. Dravid, K. Aydin, and C. A. Mirkin, Science, 359, 669 (2018).CrossRefGoogle Scholar
  85. (85).
    W. Zhou, Q. Y. Lin, J. A. Mason, V. P. Dravid, and C. A. Mirkin, Small, 1802742 (2018).Google Scholar
  86. (86).
    É. Ducrot, M. He, G. R. Yi, and D. J. Pine, Nat. Mater., 16, 652 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Jeongbin Moon
    • 1
  • In-Seong Jo
    • 1
  • Etienne Ducrot
    • 2
  • Joon Suk Oh
    • 2
  • David J. Pine
    • 2
    • 3
  • Gi-Ra Yi
    • 1
    Email author
  1. 1.Department of Chemical EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Center for Soft Matter Research and Department of PhysicsNew York UniversityNew YorkUSA
  3. 3.Department of Chemical and Biomolecular EngineeringNew York UniversityBrooklynUSA

Personalised recommendations