Macromolecular Research

, Volume 26, Issue 12, pp 1066–1073 | Cite as

Junction Welding Techniques for Metal Nanowire Network Electrodes

  • Hyungseok Kang
  • Gi-Ra Yi
  • Young Jun KimEmail author
  • Jeong Ho ChoEmail author


Transparent conductive electrodes (TCEs), which offer advantages of high electrical conductivity and optical transparency, are essential components of practical high-tech optoelectronics such as touch panels, e-papers, organic light-emitting diodes, and solar cells. Solution-processed Ag nanowires (AgNWs) have been considered as a practical alternative TCE material suitable for industrial-scale mass production. However, the contact resistance at AgNW junctions strongly affects the total sheet resistance of AgNW electrodes. In recent years, various welding techniques for AgNW network electrodes have been developed with the aim of decreasing their sheet resistance while maintaining their optical transmittance. In this paper, we present a review of various welding methods such as thermal-mechanical welding, light welding, chemical welding, and metal-plating welding.


transparent conductive electrode silver nanowire welding sheet resistance optical transmittance 


  1. (1).
    J. Stephenson and L. Limbrick, J. Autism Dev. Disord., 45, 3777 (2015).CrossRefGoogle Scholar
  2. (2).
    J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, and B.-S. Bae, Energ. Environ. Sci., 6, 1811 (2013).CrossRefGoogle Scholar
  3. (3).
    Y. Choi, W.-Y. Park, M. S. Kang, G.-R. Yi, J.-Y. Lee, Y.-H. Kim, and J. H. Cho, ACS Nano, 9, 4288 (2015).CrossRefGoogle Scholar
  4. (4).
    K. Lee, J.-W. Shin, J.-H. Park, J. Lee, C. W. Joo, J.-I. Lee, D.-H. Cho, J. T. Lim, M.-C. Oh, and B.-K. Ju, ACS Appl. Mater. Interfaces, 8, 17409 (2016).CrossRefGoogle Scholar
  5. (5).
    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, and G. Li, Nat. Commun., 4, 1446 (2013).CrossRefGoogle Scholar
  6. (6).
    T. J. Coutts, D. L. Young, and X. Li, MRS Bull., 25, 58 (2000).CrossRefGoogle Scholar
  7. (7).
    K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, Thin Solid Films, 517, 2590 (2009).CrossRefGoogle Scholar
  8. (8).
    A. Kumar and C. Zhou, ACS Nano, 4, 11 (2010).CrossRefGoogle Scholar
  9. (9).
    D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. Newton, Appl. Phys. Lett., 76, 1425 (2000).CrossRefGoogle Scholar
  10. (10).
    H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, Nat. Nanotechnol., 8, 421 (2013).CrossRefGoogle Scholar
  11. (11).
    Q. Sun, S. J. Lee, H. Kang, Y. Gim, H. S. Park, and J. H. Cho, Nanoscale, 7, 6798 (2015).CrossRefGoogle Scholar
  12. (12).
    J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, Nat. Photonics, 7, 817 (2013).CrossRefGoogle Scholar
  13. (13).
    D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim, and J. H. Cho, Adv. Mater., 28, 2601 (2016).CrossRefGoogle Scholar
  14. (14).
    B. J. Kim, E. Hwang, M. S. Kang, and J. H. Cho, Adv. Mater., 27, 5875 (2015).CrossRefGoogle Scholar
  15. (15).
    Q. Sun, W. Seung, B. J. Kim, S. Seo, S. W. Kim, and J. H. Cho, Adv. Mater., 27, 3411 (2015).CrossRefGoogle Scholar
  16. (16).
    X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, Nano Energy, 11, 728 (2015).CrossRefGoogle Scholar
  17. (17).
    J. H. Park, D. Y. Lee, W. Seung, Q. Sun, S.-W. Kim, and J. H. Cho, J. Phys. Chem. C, 119, 7802 (2015).CrossRefGoogle Scholar
  18. (18).
    J. H. Park, D. Y. Lee, Y.-H. Kim, J. K. Kim, J. H. Lee, J. H. Park, T.-W. Lee, and J. H. Cho, ACS Appl. Mater. Interfaces, 6, 12380 (2014).CrossRefGoogle Scholar
  19. (19).
    J. Jang, H.-G. Im, J. Jin, J. Lee, J.-Y. Lee, and B.-S. Bae, ACS Appl. Mater. Interfaces, 8, 27035 (2016).CrossRefGoogle Scholar
  20. (20).
    B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, and D. Carnahan, Adv. Mater., 26, 873 (2014).CrossRefGoogle Scholar
  21. (21).
    C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, and H.-K. Kim, Sol. Energy Mater. Sol. Cells, 95, 3269 (2011).CrossRefGoogle Scholar
  22. (22).
    Q. Shao, Z. Niu, M. Hirtz, L. Jiang, Y. Liu, Z. Wang, and X. Chen, Small, 10, 1466 (2014).CrossRefGoogle Scholar
  23. (23).
    J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, Nanoscale, 4, 6408 (2012).CrossRefGoogle Scholar
  24. (24).
    J. H. Lee, P. Lee, D. Lee, S. S. Lee, and S. H. Ko, Cryst. Growth Des., 12, 5598 (2012).CrossRefGoogle Scholar
  25. (25).
    H. Sim, S. Bok, B. Kim, M. Kim, G. H. Lim, S. M. Cho, and B. Lim, Angew. Chem., 128, 11993 (2016).CrossRefGoogle Scholar
  26. (26).
    Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Nano Lett., 3, 955 (2003).CrossRefGoogle Scholar
  27. (27).
    Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, Chem. Mater., 14, 4736 (2002).CrossRefGoogle Scholar
  28. (28).
    H. Lee, D. Lee, Y. Ahn, E.-W. Lee, L. S. Park, and Y. Lee, Nanoscale, 6, 8565 (2014).CrossRefGoogle Scholar
  29. (29).
    C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, Org. Electron., 14, 143 (2013).CrossRefGoogle Scholar
  30. (30).
    D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Nanoscale, 5, 977 (2013).CrossRefGoogle Scholar
  31. (31).
    J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, and C. J. Brabec, Adv. Funct. Mater., 23, 1711 (2013).CrossRefGoogle Scholar
  32. (32).
    V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, Small, 7, 2621 (2011).CrossRefGoogle Scholar
  33. (33).
    L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano, 4, 2955 (2010).CrossRefGoogle Scholar
  34. (34).
    E. Jung, C. Kim, M. Kim, H. Chae, J. H. Cho, and S. M. Cho, Org. Electron., 41, 190 (2017).CrossRefGoogle Scholar
  35. (35).
    H. Kang, I. Kang, J. Han, J. B. Kim, D. Y. Lee, S. M. Cho, and J. H. Cho, J. Phys. Chem. C, 120, 22012 (2016).CrossRefGoogle Scholar
  36. (36).
    A. T. Bellew, H. G. Manning, C. Gomes da Rocha, M. S. Ferreira, and J. J. Boland, ACS Nano, 9, 11422 (2015).CrossRefGoogle Scholar
  37. (37).
    D. Chen, J. Liang, C. Liu, G. Saldanha, F. Zhao, K. Tong, J. Liu, and Q. Pei, Adv. Funct. Mater., 25, 7512 (2015).CrossRefGoogle Scholar
  38. (38).
    D. Chen, F. Zhao, K. Tong, G. Saldanha, C. Liu, and Q. Pei, Adv. Electron. Mater., 2, 1600167 (2016).CrossRefGoogle Scholar
  39. (39).
    W. Hu, X. Niu, R. Zhao, and Q. Pei, Appl. Phys. Lett., 102, 083303 (2013).CrossRefGoogle Scholar
  40. (40).
    H.-G. Im, J. Jin, J.-H. Ko, J. Lee, J.-Y. Lee, and B.-S. Bae, Nanoscale, 6, 711 (2014).CrossRefGoogle Scholar
  41. (41).
    J. G. Lee, D. Y. Kim, J. H. Lee, S. Sinha-Ray, A. L. Yarin, M. T. Swihart, D. Kim, and S. S. Yoon, Adv. Funct. Mater., 27, 201602548 (2017).Google Scholar
  42. (42).
    M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, and S. Nam, Nano Lett., 13, 2814 (2013).CrossRefGoogle Scholar
  43. (43).
    S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, Adv. Mater., 26, 6670 (2014).CrossRefGoogle Scholar
  44. (44).
    A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano Res., 3, 564 (2010).CrossRefGoogle Scholar
  45. (45).
    S. Coskun, E. S. Ates, and H. E. Unalan, Nanotechnology, 24, 125202 (2013).CrossRefGoogle Scholar
  46. (46).
    T.-B. Song, Y. Chen, C.-H. Chung, Y. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, ACS Nano, 8, 2804 (2014).CrossRefGoogle Scholar
  47. (47).
    J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett., 8, 689 (2008).CrossRefGoogle Scholar
  48. (48).
    D. C. Choo and T. W. Kim, Sci. Rep., 7, 1696 (2017).CrossRefGoogle Scholar
  49. (49).
    B. E. Hardin, W. Gaynor, I.-K. Ding, S.-B. Rim, P. Peumans, and M. D. McGehee, Org. Electron., 12, 875 (2011).CrossRefGoogle Scholar
  50. (50).
    T. C. Hauger, S. I. Al-Rafia, and J. M. Buriak, ACS Appl. Mater. Interfaces, 5, 12663 (2013).CrossRefGoogle Scholar
  51. (51).
    T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, Nano Res., 4, 1215 (2011).CrossRefGoogle Scholar
  52. (52).
    E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, Nat. Mater., 11, 241 (2012).CrossRefGoogle Scholar
  53. (53).
    J. H. Park, G. T. Hwang, S. Kim, J. Seo, H. J. Park, K. Yu, T. S. Kim, and K. J. Lee, Adv. Mater., 29, 1603473 (2017).CrossRefGoogle Scholar
  54. (54).
    J. Kim, Y. S. Nam, M. H. Song, and H. W. Park, ACS Appl. Mater. Interfaces, 8, 20938 (2016).CrossRefGoogle Scholar
  55. (55).
    Y.-R. Jang, W.-H. Chung, Y.-T. Hwang, H.-J. Hwang, S.-H. Kim, and H.-S. Kim, ACS Appl. Mater. Interfaces, 10, 24099 (2018).CrossRefGoogle Scholar
  56. (56).
    J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida, and K. Shinozaki, J. Mater. Chem., 22, 23561 (2012).CrossRefGoogle Scholar
  57. (57).
    J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, and C.-S. Han, ACS Appl. Mater. Interfaces, 6, 10974 (2014).CrossRefGoogle Scholar
  58. (58).
    J. Lee, I. Lee, T. S. Kim, and J. Y. Lee, Small, 9, 2887 (2013).CrossRefGoogle Scholar
  59. (59).
    H. Kang, Y. Kim, S. Cheon, G.-R. Yi, and J. H. Cho, ACS Appl. Mater. Interfaces, 9, 30779 (2017).CrossRefGoogle Scholar
  60. (60).
    S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T.-W. Lee, and G.-R. Yi, Nanoscale, 6, 11828 (2014).CrossRefGoogle Scholar
  61. (61).
    J. Ahn, J.-W. Seo, J. Y. Kim, J. Lee, C. Cho, J. Kang, S.-Y. Choi, and J.-Y. Lee, ACS Appl. Mater. Interfaces, 8, 1112 (2016).CrossRefGoogle Scholar
  62. (62).
    S.-S. Yoon and D.-Y. Khang, Nano Lett., 16, 3550 (2016).CrossRefGoogle Scholar
  63. (63).
    Y.-M. Chang, W.-Y. Yeh, and P.-C. Chen. Nanotechnology, 25, 285601 (2014).CrossRefGoogle Scholar
  64. (64).
    H. Kang, S.-J. Song, Y. E. Sul, B.-S. An, Z. Yin, Y. Choi, L. Pu, C.-W. Yang, Y. S. Kim, and S. M. Cho, ACS Nano, 12, 4894 (2018).CrossRefGoogle Scholar
  65. (65).
    H. Lee, S. Hong, J. Lee, Y. D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, and S. H. Ko, ACS Appl. Mater. Interfaces, 8, 15449 (2016).CrossRefGoogle Scholar
  66. (66).
    H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. H. Jeong, E. Lee, J. Y. Lee, and I. Park, Small, 10, 4171 (2014).Google Scholar
  67. (67).
    S. Sophie, E. L. Philip, D. Sukanta, C. D. Janet, and N. C. Jonathan, Nanotechnology, 23, 185201 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon, GyeonggiKorea
  2. 2.School of Chemical EngineeringSungkyunkwan UniversitySuwon, GyeonggiKorea
  3. 3.Department of Nano EngineeringSungkyunkwan UniversitySuwon, GyeonggiKorea

Personalised recommendations