Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1185–1192 | Cite as

Cationic Polymers for Coating Living Cells

  • Daewha Hong
  • Sung Ho YangEmail author
Review
  • 93 Downloads

Abstract

Cytocompatible coating of living cells have been reported as useful methods for enhancing stability of inner cells under in vitro conditions, providing chemical functionality on cell surfaces, and controlling kinetics of cell proliferations. These chemically driven events are often utilized for the development of cell based sensor, tissue engineering, and cell therapy, as well as for understanding single-cell behavior. Because most of the cell surface is negatively charged, selection and control of cationic polymers are significant for enhancing electrostatic interactions between the cell surface and the polymer, and for reducing toxicity of the cationic polymers. In this review, cationic polymers used for coating living cells are highlighted as a single layered coat, as a component of layer-by-layer (LbL) film with anionic polymer species, or as a catalytic template inducing inorganic materials of interest. Cationic biopolymers and synthetic polymers compatible to the target cell are covered in this review.

Keywords

cationic polymer cationic polyelectrolyte cell coating cell encapsulation layer-by-layer (LbL) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. H. Park, D. Hong, J. Lee, and I. S. Choi, Acc. Chem. Res., 49, 792 (2016).CrossRefGoogle Scholar
  2. (2).
    D. Hong, M. Park, S. H. Yang, J. Lee, Y.-G. Kim, and I. S. Choi, Trends Biotechnol., 31, 442 (2013).CrossRefGoogle Scholar
  3. (3).
    J. H. Park, S. H. Yang, J. Lee, E. H. Ko, D. Hong, and I. S. Choi, Adv. Mater., 26, 2001 (2014).CrossRefGoogle Scholar
  4. (4).
    W. K. Cho and S. H. Yang, Eur. J. Inorg. Chem., 4481, (2015).Google Scholar
  5. (5).
    R. F. Fakhrullin, A. I. Zamaleeva, R. T. Minullina, S. A. Konnova, and V. N. Paunov, Chem. Soc. Rev., 41, 4189 (2012).CrossRefGoogle Scholar
  6. (6).
    R. F. Fakhrullin and Y. M. Lvov, ACS Nano, 6, 4557 (2012).CrossRefGoogle Scholar
  7. (7).
    S. H. Yang, D. Hong, J. Lee, E. H. Ko, and I. S. Choi, Small, 9, 178 (2013).CrossRefGoogle Scholar
  8. (8).
    A. Hillberg and M. Tabrizian, Biomacromolecules, 7, 2742 (2006).CrossRefGoogle Scholar
  9. (9).
    B. J. Kim, I. S. Choi, and S. H. Yang, Bull. Korean Chem. Soc., 37, 1850 (2016).CrossRefGoogle Scholar
  10. (10).
    B. Wang, P. Liu, Y. Y. Tang, H. H. Pan, X. R. Xu, and R. Tang, PloS ONE, 5, e9963 (2010).CrossRefGoogle Scholar
  11. (11).
    A. C. Anselmo, K. J. McHugh, J. Webster, R. Langer, and A. Jaklenec, Adv. Mater., 28, 9486 (2016).CrossRefGoogle Scholar
  12. (12).
    S. S. Balkundi, N. G. Veerabadran, D. M. Eby, G. R. Johnson, and Y. M. Lvov, Langmuir, 25, 14011 (2009).CrossRefGoogle Scholar
  13. (13).
    I. Drachuk, O. Shchepelina, S. Harbaugh, N. Kelley-Loughnane, M. Stone, and V. V. Tsukruk, Small, 9, 3128 (2013).CrossRefGoogle Scholar
  14. (14).
    J. T. Wilson, V. R. Krishnamurthy, W. Cui, Z. Qu, and E. L. Chaikof, J. Am. Chem. Soc., 131, 18228 (2009).CrossRefGoogle Scholar
  15. (15).
    J. T. Wilson, W. Cui, V. Kozlovskaya, E. Kharlampieva, D. Pan, Z. Qu, V. R. Krishnamurthy, J. Mets, V. Kumar, J. Wen, Y. Song, V. V. Tsukruk, and E. L. Chaikof, J. Am. Chem. Soc., 133, 7054 (2011).CrossRefGoogle Scholar
  16. (16).
    S. Mansouri, Y. Merhi, F. M. Winnik, and M. Tabrizian, Biomacromolecules, 12, 585 (2011).CrossRefGoogle Scholar
  17. (17).
    N. G. Veerabadran, P. L. Goli, S. S. Stewart-Clark, Y. M. Lvov, and D. K. Mills, Macromol. Biosci., 7, 877 (2007).CrossRefGoogle Scholar
  18. (18).
    D. Choi, H. Lee, H.-B. Kim, M. Yang, J. Heo, Y. Won, S. S. Jang, J. K. Park, Y. Son, T. I. Oh, E. Lee, and J. Hong, Chem. Mater., 29, 2055 (2017).CrossRefGoogle Scholar
  19. (19).
    J. H. Park, I. S. Choi, and S. H. Yang, Chem. Commun., 51, 5523 (2015).CrossRefGoogle Scholar
  20. (20).
    R. L. Brutchey and D. E. Morse, Chem. Rev., 108, 4915 (2008).CrossRefGoogle Scholar
  21. (21).
    J. Flemke, M. Maywald, and V. Sieber, Biomacromolecules, 14, 207 (2013).CrossRefGoogle Scholar
  22. (22).
    V. Zelenák, V. Hornebecq, S. Mornet, O. Schäf, and P. Llewellyn, Chem. Mater., 18, 3184 (2006).CrossRefGoogle Scholar
  23. (23).
    S. H. Yang, E. H. Ko, and I. S. Choi, Langmuir, 28, 2151 (2012).CrossRefGoogle Scholar
  24. (24).
    E. H. Ko, Y. Yoon, S. H. Yang, and D. Hong, I. S. Choi, Angew. Chem. Int. Ed., 52, 12279 (2013).CrossRefGoogle Scholar
  25. (25).
    W. Youn, E. H. Ko, M.-H. Kim, M. Park, D. Hong, G. A. Seisenbaeva, V. G. Kessler, and I. S. Choi, Angew. Chem. Int. Ed., 56, 10702 (2017).CrossRefGoogle Scholar
  26. (26).
    A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, and A. Gliozzi, Langmuir, 18, 5047 (2002).CrossRefGoogle Scholar
  27. (27).
    S. Krol, M. Nolte, A. Diaspro, D. Mazza, R. Magrassi, A. Gliozzi, and A. Fery, Langmuir, 21, 705 (2005).CrossRefGoogle Scholar
  28. (28).
    A. I. Zamaleeva, I. R. Sharipova, A. V. Porfireva, G. A. Evtugyn, and R. F. Fakhrullin, Langmuir, 26, 2671 (2010).CrossRefGoogle Scholar
  29. (29).
    R. F. Fakhrullin, J. García-Alonso, and V. N. Paunov, Soft Matter, 6, 391 (2010).CrossRefGoogle Scholar
  30. (30).
    J. García-Alonso, R. F. Fakhrullin, V. N. Paunov, Z. Shen, J. D. Hardege, N. Pamme, S. J. Haswell, and G. M. Greenway, Anal. Bioanal. Chem., 400, 1009 (2011).CrossRefGoogle Scholar
  31. (31).
    R. F. Fakhrullin, L. V. Shlykova, A. I. Zamaleeva, D. K. Nurgaliev, Y. N. Osin, J. García-Alonso, and V. N. Paunov, Macromol. Biosci., 10, 1257 (2010).CrossRefGoogle Scholar
  32. (32).
    A. I. Zamaleeva, I. R. Sharipova, R. V. Shamagsumova, A. N. Ivanov, G. A. Evtugyn, D. G. Ishmuchametova, and R. F. Fakhrullin, Anal. Methods, 3, 509 (2011).CrossRefGoogle Scholar
  33. (33).
    D. Zhang, R. F. Fakhrullin, M. Özmen, H. Wang, J. Wang, V. N. Paunov, G. Li, and W. E. Huang, Microb. Biotechnol., 4, 89 (2011).CrossRefGoogle Scholar
  34. (34).
    R. T. Minullina, Y. N. Osin, D. G. Ishmuchametova, and R. F. Fakhrullin, Langmuir, 27, 7708 (2011).CrossRefGoogle Scholar
  35. (35).
    M. R. Dzamukova, A. I. Zamaleeva, D. G. Ishmuchametova, Y. N. Osin, A. P. Kiyasov, D. K. Nurgaliev, O. N. Ilinskaya, and R. F. Fakhrullin, Langmuir, 27, 14386 (2011).CrossRefGoogle Scholar
  36. (36).
    M. R. Dzamukova, E. A. Naumenko, N. I. Lannik, and R. F. Fakhrullin, Biomater. Sci., 1, 810 (2013).CrossRefGoogle Scholar
  37. (37).
    M. D. Tarn, R. F. Fakhrullin, V. N. Paunov, and N. Pamme, Mater. Lett., 95, 182 (2013).CrossRefGoogle Scholar
  38. (38).
    D. M. Kaschak and T. E. Mallouk, J. Am. Chem. Soc., 118, 4222 (1996).CrossRefGoogle Scholar
  39. (39).
    S. Krol, A. Diaspro, R. Magrassi, P. Ballario, B. Grimaldi, P. Filetici, P. Ornaghi, P. Ramoino, and A. Gliozzi, IEEE Trans. Nanobiosci., 3, 32 (2004).CrossRefGoogle Scholar
  40. (40).
    S. Krol, O. Cavalleri, P. Ramoino, A. Gliozzi, and A. Diaspro, J. Microscopy, 212, 239 (2003).CrossRefGoogle Scholar
  41. (41).
    I. Erel-Unal and S. A. Sukhishvili, Macromolecules, 41, 3962 (2008).CrossRefGoogle Scholar
  42. (42).
    V. Kozlovskaya, S. Harbaugh, I. Drachuk, O. Shchepelina, N. Kelley-Loughnane, M. Stone, and V. V. Tsukruk, Soft Matter, 7, 2364 (2011).CrossRefGoogle Scholar
  43. (43).
    I. Drachuk, O. Shchepelina, M. Lisunova, S. Harbaugh, N. Kelley-Loughnane, M. Stone, and V. V. Tsukruk, ACS Nano, 6, 4266 (2012).CrossRefGoogle Scholar
  44. (44).
    H. Ai, M. Fang, S. A. Jones, and Y. M. Lvov, Biomacromolecules, 3, 560 (2002).CrossRefGoogle Scholar
  45. (45).
    M. Yu and A. Ivanisevic, Biomaterials, 25, 3655 (2004).CrossRefGoogle Scholar
  46. (46).
    M. Germain, P. Balaguer, J.-C. Nicolas, F. Lopez, J.-P. Esteve, G. B. Sukhorukov, M. Winterhalter, H. Richard-Foy, and D. Fournier, Biosens. Bioelectron., 21, 1566 (2006).CrossRefGoogle Scholar
  47. (47).
    B. Wang, P. Liu, W. Jiang, H. Pan, X. Xu, and R. Tang, Angew. Chem. Int. Ed., 47, 3560 (2008).CrossRefGoogle Scholar
  48. (48).
    S. H. Yang, K.-B. Lee, B. Kong, J.-H. Kim, H.-S. Kim, and I. S. Choi, Angew. Chem. Int. Ed., 48, 9160 (2009).CrossRefGoogle Scholar
  49. (49).
    H. Lee, D. Hong, J. Y. Choi, J. Y. Kim, S. H. Lee, H. M. Kim, S. H. Yang, and I. S. Choi, Chem. Asian J., 10, 129 (2015).CrossRefGoogle Scholar
  50. (50).
    J. Lee, S. H. Yang, S.-P. Hong, D. Hong, H. Lee, H.-Y. Lee, Y.-G. Kim, and I. S. Choi, Macromol. Rapid Commun., 34, 1351 (2013).CrossRefGoogle Scholar
  51. (51).
    D. Hong, H. Lee, E. H. Ko, J. Lee, H. Cho, M. Park, S. H. Yang, and I. S. Choi, Chem. Sci., 6, 203 (2015).CrossRefGoogle Scholar
  52. (52).
    J. Lee, J. Choi, J. H. Park, M.-H. Kim, D. Hong, H. Cho, S. H. Yang, and Choi, I. S., Angew. Chem. Int. Ed., 53, 8056 (2014).CrossRefGoogle Scholar
  53. (53).
    S. H. Yang, E. H. Ko, Y. H. Jung, and I. S. Choi, Angew. Chem. Int. Ed., 50, 6115 (2011).CrossRefGoogle Scholar
  54. (54).
    S. H. Yang, J. Choi, L. Palanikumar, E. S. Choi, J. Lee, J. Kim, I. S. Choi, and J.-H. Ryu, Chem. Sci., 6, 4698 (2015).CrossRefGoogle Scholar
  55. (55).
    A. Nishiguchi, H. Yoshida, M. Matsusaki, and M. Akashi, Adv. Mater., 23, 3506 (2011).CrossRefGoogle Scholar
  56. (56).
    M. Matsusaki, K. Kadowaki, Y. Nakahara, and M. Akashi, Angew. Chem. Int. Ed., 46, 4689 (2007).CrossRefGoogle Scholar
  57. (57).
    S. H. Yang, S. M. Kang, K.-B. Lee, T. D. Chung, H. Lee, and I. S. Choi, J. Am. Chem. Soc., 113, 2795 (2011).CrossRefGoogle Scholar
  58. (58).
    J. H. Park, K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, and Y. Lee, and I. S. Choi, Angew. Chem., Int. Ed., 53, 12420 (2014).Google Scholar
  59. (59).
    J. Lee, H. Cho, J. Choi, D. Hong, D. Kim, J. H. Park, S. H. Yang, and I. S. Choi, Nanoscale, 7, 18918 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemistry Institute of Functional MaterialsPusan National UniversityBusanKorea
  2. 2.Department of Chemistry EducationKorea National University of EducationChungbukKorea

Personalised recommendations