Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1129–1134 | Cite as

Facile Synthesis of Surfactant-Free Au Decorated Hollow Silica Nanoparticles for Photothermal Applications

  • Ju Ri Seo
  • Hyung Woo Choi
  • Da Eun Kim
  • Da Yeon Park
  • Eun-Joong Kim
  • Bong Geun ChungEmail author
Article
  • 96 Downloads

Abstract

We report herein a novel surfactant-free synthetic approach for hollow silica nanoparticles (HSN) loaded with Au nanocomposites (Au-HSN) to enhance photothermal properties. Transmission electron microscopy and elemental analysis confirmed the uniform HSN of Au nanoparticles. UV-vis spectroscopy and Fourier transform infrared spectroscopy were performed to demonstrate the dopamine (DA)-hyaluronate (HA) coating on Au-HSN. These nanocomposites dramatically increased up to 48 °C within few seconds under near-infrared irradiation. In addition, these Au-HSN/DA-HA nanoparticles showed the excellent endocytosis against cancer cells without any cytotoxicity. Therefore, it could be a powerful nanocarrier for tumor targeting and photothermal therapy applications.

Keywords

hollow silica nanoparticle gold nanocomposite photothermal effect pH-responsive drug release 

Supplementary material

13233_2018_6143_MOESM1_ESM.pdf (226 kb)
Supporting Information

References

  1. (1).
    T. M. Sun, J. Z. Du, Y. D. Yao, C. Q. Qao, S. Dou, S.Y. Huang, P. Z. Zhang, K. W. Leong, E. W. Song, and J. Wang, ACS Nano, 5, 1483 (2011).CrossRefGoogle Scholar
  2. (2).
    H. J. Mauceri, N. N. Hanna, M. A. Beckett, D. H. Gorski, M. J. Staba, K. A. Stellato, K. Bigelow, R. Heimann, S. Gately, M. Dhanabal, G. A. soff, V. P. Sukhatime, D. W. Kufe, and R. R. Weichselbaum, Nature, 394, 287 (1998).CrossRefGoogle Scholar
  3. (3).
    D. Lane, Nat. Biotechnol., 24, 163 (2006).CrossRefGoogle Scholar
  4. (4).
    S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, and R. Sasisekharan, Nature, 436, 568 (2005).CrossRefGoogle Scholar
  5. (5).
    H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink, and A. E. Nel, ACS Nano, 4, 4539 (2010).CrossRefGoogle Scholar
  6. (6).
    S. Hen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. jiang, and W. Yang, Biomaterials, 34, 3150 (2013).CrossRefGoogle Scholar
  7. (7).
    H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, and F. Tang, Angew. Chem. Int. Ed., 50, 891 (2011).CrossRefGoogle Scholar
  8. (8).
    T. S. Hauck, T. L. Jennings, T. Yatsenko, J. C. Kumaradas, and W. C. Chan, Adv. Mater., 20, 3832 (2008).CrossRefGoogle Scholar
  9. (9).
    L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang. R. S. Langer, and O. C. Farokhzad, Clin. Pharmacol. Therapeut., 83, 761 (2008).CrossRefGoogle Scholar
  10. (10).
    X. H. Huang, I. H. El-Sayed, Q. Wei, and M. A. El-Sayed, J. Am. Chem. Soc., 128, 2115 (2006).CrossRefGoogle Scholar
  11. (11).
    W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, Angew. Chem. Int. Ed., 49, 2711 (2010).CrossRefGoogle Scholar
  12. (12).
    J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. X. Yang, M. Gidding, M. J. Welch, and Y. N. Xia, Small, 6, 811 (2010).CrossRefGoogle Scholar
  13. (13).
    K. W. Hu, C. C. Huang, J. R. Hwu, W. C. Su, D. B. Shieh, and C. S. Yeh, Chem. Eur. J., 14, 2956 (2008).CrossRefGoogle Scholar
  14. (14).
    I. Gorelikov and N. Matsuura, Nano Lett., 8, 369 (2008).CrossRefGoogle Scholar
  15. (15).
    Q. Q. Zhan, J. Qian, X. Li, and S. L. He, Nanotechnol., 21, 055704 (2010).CrossRefGoogle Scholar
  16. (16).
    J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Angew. Chem. Int. Ed., 51, 3591 (2012).CrossRefGoogle Scholar
  17. (17).
    Z. A. Qiao, B. Guo, A. J. Binder, J. Chen, G. M. Veith, and S. Dai, Nano Lett., 13, 207 (2013).CrossRefGoogle Scholar
  18. (18).
    W. S. Choi, J. H. Park, H. Y. Koo, J. Y. Kim, B. K. Cho, and D. Y. Kim, Angew. Chem. Int. Ed., 44, 1096 (2005).CrossRefGoogle Scholar
  19. (19).
    A. Yasmin, K. Ramesh, and S. Rajeshkumar, Nano Converg., 1, 12 (2014).CrossRefGoogle Scholar
  20. (20).
    C. S. Kim, D. Ingato, P. Wilder-Smith, Z. Chen and Y. J. Kwon, Nano Converg., 5, 3 (2018).CrossRefGoogle Scholar
  21. (21).
    H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, Anal. Methods, 4, 3981 (2012).CrossRefGoogle Scholar
  22. (22).
    S. M. Sharker, S. M. Kim, J. E. Lee, K. H. Choi, G. Shin, S. Lee, K. D. Lee, J. H. Jeong, H. Lee, and S. Y. Park, J. Control. Release, 217, 211 (2015).CrossRefGoogle Scholar
  23. (23).
    M. S. Islam, W. S. Choi, and H. J. Lee, ACS Appl. Mater. Interfaces, 6, 9563 (2014).CrossRefGoogle Scholar
  24. (24).
    J. Yu, H. Yang, K. Li, J. Lei, L. Zhou, and C. Huang, J. Dent., 50, 21 (2016).CrossRefGoogle Scholar
  25. (25).
    Y. Ma, H. Niu, X. Zhang, and Y. Cai, Analyst, 136, 4192 (2011).CrossRefGoogle Scholar
  26. (26).
    G. Ma, Z. Wang, J. Chen, R. Yin, B. Chen, and J. Nie, New J. Chem., 34, 1211 (2014).CrossRefGoogle Scholar
  27. (27).
    H. Kim, D. Lee, J. Kim, T. I. Kim, and W. J. Kim, ACS Nano, 7, 6735 (2013).CrossRefGoogle Scholar
  28. (28).
    Q. Zheng, T. Lin, H. Wu, L. Guo, P. Ye, Y. Hao, Q. Guo, J. Jiang, F. Fu, and G. Chen, Int. J. Pharm., 463, 22 (2014).CrossRefGoogle Scholar
  29. (29).
    C. X. Zhao, L. Yu, and A. P. J. Middelberg, J. Mater. Chem. B, 1, 4828 (2013).CrossRefGoogle Scholar
  30. (30).
    C. Park, K. Oh, S. C. Lee, and C. Kim, Angew. Chem. Int. Ed., 46, 1455 (2007).CrossRefGoogle Scholar
  31. (31).
    L. Bai, Q. Zhao, J. Wang, Y. Gao, Z. Sha, D. Di, N. Han, Y. Wang, J. Zhang, and S. Wang, Nanotechnology, 26, 165704 (2015).CrossRefGoogle Scholar
  32. (32).
    C. Y. Chang, A. T. Chan, P. A. Armstrong, H. C. Luo, T. Higuchi, I. A. Strhin, S. Vakrou, X. Lin, S. N. Brown, B. O`Rourke, T. P. Abraham, R. L. Wahl, C. J. Steenbergen, J. H. Elisseeff, and M. R. Abraham, Biomaterials, 33, 8026 (2012).CrossRefGoogle Scholar
  33. (33).
    C. Cheng, S. Li, S. Q. Nie, W. F. Zhao, H. Yang, S. D. Sun, and C. S. Zhao, Biomacromolecules, 13, 4236 (2012).CrossRefGoogle Scholar
  34. (34).
    F. Wu, J. Li, K. Zhang, Z. He, P. Yang, D. Zou, and N. Huang, ACS Appl. Mater. Interfaces, 8, 109 (2016).CrossRefGoogle Scholar
  35. (35).
    K. S. Kim, S. J. Park, M. Y. Lee, K. G. Lim, and S. K. Hahn, Macromol. Res., 20, 277 (2012).CrossRefGoogle Scholar
  36. (36).
    S. H. Kang, M. Nafiujjaman, M. Nurunnabi, L. Li, H. A. Khan, K. J. Cho, K. M. Huh, and Y. K. Lee, Macromol. Res., 23, 474 (2015).CrossRefGoogle Scholar
  37. (37).
    C. M. Figueroa, M. Morales-Cruz, B. N. Suarez, J. C. Fernandez, A. M. Molina, C. M. Quinones, and K. Griebenow, J. Nanomed. Nanotechnol., 6, 316 (2015).Google Scholar
  38. (38).
    L. Chen, X. Zhou, W. Nie, Q. Zhang, W. Wang, Y. Zhang, and C. He, ACS Appl. Mater. Interfaces, 8, 33829 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Ju Ri Seo
    • 1
  • Hyung Woo Choi
    • 2
  • Da Eun Kim
    • 1
  • Da Yeon Park
    • 1
  • Eun-Joong Kim
    • 2
  • Bong Geun Chung
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringSogang UniversitySeoulKorea
  2. 2.Research CenterSogang UniversitySeoulKorea
  3. 3.Department of Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations