Macromolecular Research

, Volume 26, Issue 11, pp 973–977 | Cite as

Laser-Induced Morphology Change Based on Small Molecular Model Compounds Photo-Detector

  • Ruiping QinEmail author
  • Deen Guo
  • Jien Yang
  • Yurong Jiang


Three small molecules furnished with a planar core, (5,6-bis(octyloxy) benzo[c][1,2,5] thiadiazole-4,7-diyl)bis(thiophene-5,2-diyl), and two wings, thieno [3,2-b]indole or carbazoles, were synthesized and used as sensing layer to make photo-detectors. The devices can detect photons at a wavelength band of 300–700 nm and exhibit a sensitive photo-response under on/off modulation. Near UV (405 nm) and visible (532 nm) laser beam were the light source in this work. The corrected responsivity reached up to 498 mA W-1 at 532 nm and 411 mA W-1 at 405 nm. Laser induced photo-current escalation was observed and investigated. For longer molecules, the photo-current was easy to be constant than the shorter reference counterpart. This special photo response mechanism was studied by alternating current impedance spectroscopy (IS) measurements and X-ray diffraction (XRD) exprements. Possible relations between molecular weight and various figures of merit for photo detectors were discussed.


small molecules model compounds photo detectors laser-induced morphology change crystalline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6135_MOESM1_ESM.pdf (11.3 mb)
Supporting Information


  1. (1).
    R. Fitzner, E. Mena–Osteritz, A. Mishra, G. Schulz, Reinold M. Weil, C. Körner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, and P. Bäuerle, J. Am. Chem. Soc., 134, 11064 (2012).CrossRefGoogle Scholar
  2. (2).
    Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nat. Mater., 11, 44 (2011).CrossRefGoogle Scholar
  3. (3).
    Y. Lin, P. Cheng, Y. Liu, X. Zhao, D. Li, J. Tan, W. Hu, Y. Li, and X. Zhan, Sol. Energy Mater. Sol. Cells, 99, 301 (2012).CrossRefGoogle Scholar
  4. (4).
    V. Malytskyi, J. J. Simon, L. Patrone, and J. M. Raimundo, RSC Adv., 5, 354 (2015).CrossRefGoogle Scholar
  5. (5).
    H. Lee, S. Nam, H. Kwon, S. Lee, J. Kim, W. Lee, C. Lee, J. Jeong, H. Kim, T. J. Shin, and Y. Kim, J. Mater. Chem. C, 3, 1513 (2015).CrossRefGoogle Scholar
  6. (6).
    B. H. Wunsch, K. Kim, Y. Rho, B. Ahn, S. Jung, L. E. Polander, D. G. Bucknall, S. R. Marder, and M. Ree, J. Mater. Chem. C, 1, 778 (2013).CrossRefGoogle Scholar
  7. (7).
    Y. Lin, L. Ma, Y. Li, Y. Liu, D. Zhu, and X. Zhan, Adv. Energy Mater., 4, 1300626 (2014).CrossRefGoogle Scholar
  8. (8).
    Y. Lin, L. Ma, Y. Li, Y. Liu, D. Zhu, and X. Zhan, Adv. Energy Mater., 3, 1166 (2013).CrossRefGoogle Scholar
  9. (9).
    P. Cheng, Q. Shi, Y. Lin, Y. Li, and X. Zhan, Org. Electron., 14, 599 (2013).CrossRefGoogle Scholar
  10. (10).
    K. Lee, G. Lee, D. Leem, J. Lee, W. Jong, X. Bulliard, H. Choi, K. Park, K. Kim, Y. Jin, S. Lee, and S. Park, J. Phys. Chem. C, 118, 13424 (2014).CrossRefGoogle Scholar
  11. (11).
    S. Somasundaram, S. Jeon, and S. Park, Macromol. Res., 24, 226 (2016).CrossRefGoogle Scholar
  12. (12).
    A. J. Moulé and K. Meerholz, Adv. Funct. Mater., 19, 3028 (2009).CrossRefGoogle Scholar
  13. (13).
    J. Peet, A. J. Heeger, and G. C. Bazan, Acc. Chem. Res., 42, 1700 (2009).CrossRefGoogle Scholar
  14. (14).
    I. F. Domínguez, A. Distler, and L. Lüer, Adv. Energy Mater., 7, 1601320 (2017).CrossRefGoogle Scholar
  15. (15).
    W. H. Lee, J. A. Lim, D. H. Kim, J. H. Cho, Y. Jang, Y. H. Kim, J. I. Han, and K. Cho, Adv. Funct. Mater., 18, 560 (2008).CrossRefGoogle Scholar
  16. (16).
    P. E. Keivanidis, F. Laquai, I. A. Howard, and R. H. Friend, Adv. Funct. Mater., 21, 1355 (2011).CrossRefGoogle Scholar
  17. (17).
    Y. Lin, Q. He, F. Zhao, L. Huo, J. Mai, X. Lu, C. Su, T. Li, J. Wang, J. Zhu, Y. Sun, C. Wang, and X. Zhan, J. Am. Chem. Soc., 138, 2973 (2016).CrossRefGoogle Scholar
  18. (18).
    Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T. C. Parker, W. Ma, Y. Sun, C. Wang, D. Zhu, A. J. Heeger, S. R. Marder, and X. Zhan, J. Am. Chem. Soc., 138, 4955 (2016).CrossRefGoogle Scholar
  19. (19).
    Y. Li, D. Qian, L. Zhong, J. Lin, Z. Jiang, Z. Zhang, Z. Zhang, Y. Li, L. Liao, and F. Zhang, Nano Energy, 27, 430 (2016).CrossRefGoogle Scholar
  20. (20).
    B. Kan, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, X. Yang, M. Zhang, H. Zhang, T. P. Russell, and Y. Chen, Chem. Mater., 27, 8414 (2015).CrossRefGoogle Scholar
  21. (21).
    W. Ni, M. Li, F. Liu, X. Wan, H. Feng, B. Kan, Q. Zhang, H. Zhang, and Y. Chen, Chem. Mater., 27, 6077 (2015).CrossRefGoogle Scholar
  22. (22).
    B. Chen, Y. Yang, P. Cheng, X. Chen, X. Zhan, and J. Qin, J. Mater. Chem. A, 3, 6894 (2015).CrossRefGoogle Scholar
  23. (23).
    Y. Choia, G. Kima, H. Kima, S. Ho Leea, S. Kwona, J. Kima, and K. Leea, Nano Energy, 30, 200 (2016).CrossRefGoogle Scholar
  24. (24).
    Y. Liu, Z, Zhang, S. Feng, M. Li, L. Wu, R. Hou, X. Xu, X. Chen, and Z. Bo, J. Am. Chem. Soc., 139, 3356 (2017).CrossRefGoogle Scholar
  25. (25).
    K. Tada, Macromol. Res., 25, 624 (2017).CrossRefGoogle Scholar
  26. (26).
    P. Cheng and X. Zhan, Chem. Soc. Rev., 45, 2544 (2016).CrossRefGoogle Scholar
  27. (27).
    M. E. Ragoussi and T. Torres, Chem. Comm., 51, 3957 (2015).CrossRefGoogle Scholar
  28. (28).
    Y. Lin and X. Zhan, Acc. Chem. Res., 49, 175 (2016).CrossRefGoogle Scholar
  29. (29).
    W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, and B. Yang, J. Hou, J. Am. Chem. Soc., 139, 7148 (2017).CrossRefGoogle Scholar
  30. (30).
    M. Zhang, J. Wang, F. Zhang, Y. Mi, Q. An, W. Wang, X. Ma, J. Zhang, and X. Liu, Nano Energy, 39, 571 (2017).CrossRefGoogle Scholar
  31. (31).
    J. Min, X. Jiao, V. Sgobba, B. Kan, T. Heumüller, S. Rechberger, E. Spiecker, D. M. Guldi, X. Wan, Y. Chen, H. Ade, and C. J. Brabec, Nano Energy, 28, 241 (2016).CrossRefGoogle Scholar
  32. (32).
    T. G. Woo, H. O. Seo, H. Kim, S. W. Han, B. J. Cha, and Y. D. Kim, J. Phys. Chem. C, 121, 18692 (2017).CrossRefGoogle Scholar
  33. (33).
    R. Qin, W. Li, C. Li, C. Du, C. Veit, H. F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganäs, U. Wuerfel, and F. Zhang, J. Am. Chem. Soc., 131, 14612 (2009).CrossRefGoogle Scholar
  34. (34).
    J. Kim, S. Park, G. Han, S. Chae, S. Song, J. Shim, E. Bae, I. Kim, H. Kim, J. Y. Kim, and H. Suh, Polymer, 95, 36 (2016).CrossRefGoogle Scholar
  35. (35).
    H. Huang, M. Qiu, Q. Li, S. Liu, X. Zhang, Z. Wang, N. Fu, B. Zhao, R. Yang, and W. Huang, J. Mater. Chem. C, 4, 5448 (2016).CrossRefGoogle Scholar
  36. (36).
    R. Qin, Z. Bo, Macromol. Rapid Commun., 33, 87 (2012).CrossRefGoogle Scholar
  37. (37).
    R. Qin, Y. Jiang, H. Ma, L. Yang, H. Liu, and F. Chang, J. Appli. Polym. Sci., 129, 2671 (2013).CrossRefGoogle Scholar
  38. (38).
    J. Kim, J. Y. Shim, S. Song, J. Kim, Il Kim, J. Y. Kim, and H. Suh, Macromol. Res., 23, 214 (2015).CrossRefGoogle Scholar
  39. (39).
    R. Qin, Y. Jiang, H. Zhang, K. Zhang, Q. Zhang, and F. Chang, Chinese J. Polym. Sci., 33, 490 (2015).CrossRefGoogle Scholar
  40. (40).
    R. Qin, J. Yang, P. Li, Q. Wu, Y. Zhou, H. Luo, and F. Chang, Sol. Energy Mater. Sol. Cells, 145, 412 (2016).CrossRefGoogle Scholar
  41. (41).
    S. D. Oosterhout, V. Savikhin, J. Zhang, Y. Zhang, M. A. Burgers, S. R. Marder, G. C. Bazan, and M. F. Toney, Chem. Mater., 29, 3062 (2017).CrossRefGoogle Scholar
  42. (42).
    I. Botiz, P. Freyberg, C. Leordean, A. M. Gabudean, S. Astilean, A. C. Yang, and N. Stingelin, ACS Appl. Mater. Interfaces, 6, 4974 (2014).CrossRefGoogle Scholar
  43. (43).
    Z. Yi, W. Ni, Q. Zhang, M. Li, B. Kan, X. Wan, and Y. Chen, J. Mater. Chem. C, 2, 7247 (2014).CrossRefGoogle Scholar
  44. (44).
    Y. Huang, E. J. Kramer, A. J. Heeger, and G. C. Bazan, Chem. Rev., 114, 7006 (2014).CrossRefGoogle Scholar
  45. (45).
    D. Chung, Y. Rho, M. Tee, S. Kwon, and Y. Kim, ACS Appl. Mater. Interfaces, 4, 4758 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Ruiping Qin
    • 1
    Email author
  • Deen Guo
    • 1
  • Jien Yang
    • 1
  • Yurong Jiang
    • 1
  1. 1.College of Physics & Materials Science, Key Laboratory of Photovoltaic Materials of Henan ProvinceHenan Normal UniversityXinxiangP. R. China

Personalised recommendations