Advertisement

Improving Solubility of the Telmisartan that is Poorly Water Soluble by Wet Granulation and Vitrification Process

  • Gi Won Lee
  • Sung Hyun Jeon
  • Hun Hwi Cho
  • Yong Woon Jeong
  • Han Sol Kim
  • Min Joung Choi
  • Jeong Eun Song
  • Gilson Khang
Article
  • 6 Downloads

Abstract

Telmisartan (TS) have developed for the treatment of hypertension as the angiotensin II receptor blocker. TS belongs to class II drug in BCS classification and it has good permeability. But, it is poorly water soluble. Biological half-life of TS is 24 hours because it has not good bioavailability (only 42∼58%). The absorption of a drug is often limited by dissolution rate. Drug dissolution is important factor to the therapeutic efficacy of a medicine. Therefore, TS requires alternative methods of drug delivery system to improve solubilization. In this study, we have prepared solid dispersions (SD) of the TS, polyvinylpyrrolidone (PVP) K-30 using rotary evaporation to promote release rate. So, we made sustained release formulation to make that is continually released and reduced the number of administration to patients. We selected the methods which are wet granulation (WG) and vitrification (VT) for sustained release. WG is a common techinique in the pharmaceutical industry that is mixing the powder to make bonds between powder particles using water. VT is techinique that transforms the crystalline particle into amorphous state using cryomilling. We measured the characterization of SD that was performed using various methods to analyze the structure of powder sample. Characterizations of SD were performed to analyze the surface by scanning electron microscopy. The crystallinity and molecular structure are analyzed by Fourier transform infrared spectroscopy, powder X-ray diffractometer. Also, thermal porperties are analyzed by differential scanning calorimeter. In vitro dissolution test assessed by RP-HPLC to analyze dissolution rate of sustained release formulation and solid dispersion. In this results, these indicate that both methods improve solubility and dissolution rate. The drug solubility of processed VT almost greater than the pure drug and WG. And, in Bats, VT 3 has higher dissolution rates than others. So, this results are useful to improve TS in the pharmaceutical industry.

Keywords

telmisartan cryomilling solid dispersion vitrification dissolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Y. Gao, W. Li, Y. Liu, Y. Wang, J. Zhang, M. Li, and M. Bu, J. Stroke Cerebrovasc. Dis., 27, 277 (2018).CrossRefGoogle Scholar
  2. (2).
    E. Borbás, Z. K. Nagy, B. Nagy, A. Balogh, O. Tsinman, K. Tsinman, and B. Sinko, Eur. J. Pharm. Sci., 114, 310 (2018).CrossRefGoogle Scholar
  3. (3).
    V. Soni and K. K. Chandrul, Int. J. Pharma Res. Health Sci., 6, 2451 (2018).Google Scholar
  4. (4).
    A. Sharma, K. Jyoti, V. Bansal, U. K. Jain, B. Bhushan, and J, Madan, Mater. Sci. Eng., 72, 69 (2017).CrossRefGoogle Scholar
  5. (5).
    P. Ashwini, S. Sandeep, C. Santosh, and K. Sanjay, Asian J. Pharm. Anal., 7, 185 (2017).CrossRefGoogle Scholar
  6. (6).
    G. Singh, S. Sharma, and G. D. Gupta, AAPS PharmSciTech, 18, 1770 (2017).CrossRefGoogle Scholar
  7. (7).
    P. K. Sharma, P. K. Sharma, G. N. Darwhekar, and B. Shrivastava, Int. J. Drug Regulatory Affairs, 6, 1 (2018).CrossRefGoogle Scholar
  8. (8).
    S. C. Shen, W. K. Ng, J. Hu, K. Letchmanan, J. Ng, and R. B. H. Tan, Adv. Powder Technol., 28, 1316 (2017).CrossRefGoogle Scholar
  9. (9).
    V. B. Raju, B. M. Gandhi, K. S. Sumanth, K. Srinivas, and Y. Nageswari, Int. J. Pharm. Chem. Biol. Sci., 7, 172 (2017).Google Scholar
  10. (10).
    H. A. Alhazmi, A. M. Alnami, M. A. A. Arishi, R. K. Alameer, M. A. Bratty, Z. U. Rehman, S. A. Javed, and I. A. Arbab, Sci. Pharm., 86, 1 (2018).CrossRefGoogle Scholar
  11. (11).
    S. N. Kothawade, N. R. Kadam, P. D. Aragade, and D. G. Baheti, Int. J. PharmTech Res., 2, 341 (2010).Google Scholar
  12. (12).
    Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, and S. Wang, J. Control. Release, 145, 257 (2010).CrossRefGoogle Scholar
  13. (13).
    P. Jaiswal, G. Aggarwal, S. L. Harikumar, and K. Singh, Int. J. Pharm. Investigation, 4, 195 (2014).CrossRefGoogle Scholar
  14. (14).
    L. A. Kaur, S. Pankaj, R. K. Khar, S. Jaya, and F. Ahmad, Int. J. Jaipur National University, 4, 20 (2015).CrossRefGoogle Scholar
  15. (15).
    J. Kausalya, K. Suresh, S. Padmapriya, A. Rupenagunta, and B. Senthilnathan, Int. J. PharmTech Res., 3, 1737 (2011).Google Scholar
  16. (16).
    J. S. Park, W. K. Cho, K. H. Cha, J. H. Ahn, K. Han, and S. J. Hwang, Int. J. Pharm., 441, 50 (2013).CrossRefGoogle Scholar
  17. (17).
    Y. Zhang, T. Jiang, Q. Zhang, and S. Wang, Eur. J. Pharm. Biopharm., 76, 17 (2010).CrossRefGoogle Scholar
  18. (18).
    A. Bajaj, M. R. P. Rao, A. Pardeshi, and D. Sali, AAPS PharmSciTech, 13, 1331 (2012).CrossRefGoogle Scholar
  19. (19).
    P. Laad, G. Shete, S. R. Modi, and A. K. Bansal, Eur. J. Pharm. Sci., 49, 109 (2013).CrossRefGoogle Scholar
  20. (20).
    L. M. Al–Harbi, E. H. Ei–Mossalamy, A. Y. Obaid, and M. A. El–Ries, Am. J. Anal. Chem., 4, 337 (2013).CrossRefGoogle Scholar
  21. (21).
    R. A. Saber, A. K. Attia, and W. M. Salem, Adv. Pharm. Bull., 4, 283 (2014).Google Scholar
  22. (22).
    V. Sekar and V. R. Chellan, Chem. Pharm. Bull., 56, 575 (2008).CrossRefGoogle Scholar
  23. (23).
    P. H. L. Tran, H. T. T. Tran, and B. J. Lee, J. Control. Release, 129, 59 (2008).CrossRefGoogle Scholar
  24. (24).
    A. Gupta, R. M. Charde, and M. S. Charde, J. Pharmacy Res., 4, 1270 (2011).Google Scholar
  25. (25).
    P. Chitra, S. Ganesa, K. Arumugam, K. Suvama, R. Mallayasamy, and U. Nayanabhirama, J. Planar Chromatography, 20, 477 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Gi Won Lee
    • 1
  • Sung Hyun Jeon
    • 1
  • Hun Hwi Cho
    • 1
  • Yong Woon Jeong
    • 1
  • Han Sol Kim
    • 1
  • Min Joung Choi
    • 1
  • Jeong Eun Song
    • 1
  • Gilson Khang
    • 1
  1. 1.Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research CenterChonbuk National UniversityDeokjin, Jeonju, JeonbukKorea

Personalised recommendations