Advertisement

Macromolecular Research

, Volume 26, Issue 10, pp 934–941 | Cite as

Synthesis and Characterization of Cyclopentadithiophene and Thienothiophene-Based Polymers for Organic Thin-Film Transistors and Solar Cells

  • Pramod Kandoth Madathil
  • Shinuk Cho
  • Sinil Choi
  • Tae-Dong Kim
  • Kwang-Sup LeeEmail author
Article
  • 166 Downloads

Abstract

Novel donor-donor type alternating copolymers (8CDT-TT and 16CDT-TT) derived from cyclopentadithiophene (CDT) and thienothiophene (TT) moieties that differ from solubilizing side chains were successfully synthesized and characterized. After the synthesis of CDT-TT-based conjugated polymers with dioctyl and dihexadecyl side chains, their optical, thermal, structural and semiconducting properties were investigated. Organic thin-film transistors fabricated from 8CDT-TT and 16CDT-TT exhibit carrier mobilities as high as 3.92×10-4 and 1.05×10-3 cm2V-1s-1, respectively. Bulk heterojunction solar cells fabricated using a polymer:PCBM blend ratio of 1:3 exhibit power conversion efficiencies of 2.12 and 1.84% for 8CDT-TT and 16CDT-TT, respectively.

Keywords

donor-donor type conjugated polymers organic thin film transistors organic solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Castler, and A. Fachetti, Nature, 457, 679 (2009).CrossRefGoogle Scholar
  2. (2).
    H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, and K. Müllen, Adv. Mater., 21, 209 (2009).CrossRefGoogle Scholar
  3. (3).
    M. J. Lee, D. Gupta, N. Zhao, M. Heeney, I. McCulloch, and H. Sirringhaus, Adv. Funct. Mater., 21, 932 (2011).CrossRefGoogle Scholar
  4. (4).
    Y. Jiang, Y. Gao, H. Tian, J. Ding, D. Yan, Y. Geng, and F. Wang, Macromolecules, 49, 2135 (2016).CrossRefGoogle Scholar
  5. (5).
    K. Shi, W. Zhang, X. Liu, Y. Zou, and G. Yu. Polymer, 112, 180 (2017).CrossRefGoogle Scholar
  6. (6).
    H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics, 3, 649 (2009).CrossRefGoogle Scholar
  7. (7).
    H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. Shakya Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, and I. J. McCulloch, J. Am. Chem. Soc., 133, 3272 (2011).CrossRefGoogle Scholar
  8. (8).
    J. E. Anthony, Chem. Mater., 23, 583 (2011).CrossRefGoogle Scholar
  9. (9).
    H.-S. Lee, J. S. Lee, A.-H. Jung, W. Cha, H. Kim, H. J. Son, J. H. J. Cho, and B. S. Kim, Polymer, 105, 79 (2016).CrossRefGoogle Scholar
  10. (10).
    J. Y. Kim, Y. U. Kim, H. J. Kim, H. A. Um, J. Shin, M. J. Cho, and D. H. Choi, Macromol. Res., 24, 980 (2017).CrossRefGoogle Scholar
  11. (11).
    J. Tong, J. Li, P. Zhang, X. Ma, M. Wang, L. An, J. Sun, P. Guo, C. Yang, and Y. Xia, Polymer, 121, 183 (2017).CrossRefGoogle Scholar
  12. (12).
    H. Cheon, Y. J. Kim, M. C. Hwang, J. Hong, T. K. An, S.-K. Kwon, Y.-H. Kim, Macromol. Res., 26, 29 (2018).CrossRefGoogle Scholar
  13. (13).
    C. J. Lim, Y. Lei, B. Wu, L. Li, X. Liu, Y. Lu, F. Zhu, B.S. Ong, X. Hu, and S. C. Ng, Tetrahedron Lett., 57, 1430 (2016).CrossRefGoogle Scholar
  14. (14).
    A. Facchetti, Chem. Mater., 23, 733 (2011).CrossRefGoogle Scholar
  15. (15).
    P. K. Madathil, B. Heinrich, B. Donnio, F. Mathevet, J.-L. Face, D. Guillon, A. J. Attias, C. Lee, and K.-S. Lee, J. Nanosci. Nanotechnol., 10, 6800 (2010).CrossRefGoogle Scholar
  16. (16).
    P. K. Madathil, J.-G. Lim, T.-D. Kim, D. Beckmann, A. Mavrinskiy, W. Pisula, M. Baumgarten, K. Müllen, and K.-S. Lee, J. Nanosci. Nanotechnol., 12, 4269 (2012).CrossRefGoogle Scholar
  17. (17).
    H. Huang, J. Youn, R. Ponce Ortiz, Y. Zheng, A. Facchetti, and T. Marks, Chem. Mater., 23, 2185 (2011).CrossRefGoogle Scholar
  18. (18).
    L. De Cremer, S. Vandeleene, M. Maesen, T. Verbiest, and G. Koeckelberghs, Macromolecules, 41, 591 (2008).CrossRefGoogle Scholar
  19. (19).
    H. N. Tsao, D.M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D.Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Müllen, J. Am. Chem. Soc., 133, 2605 (2011).CrossRefGoogle Scholar
  20. (20).
    Z. Li, J. Ding, N. Song, J. Lu, and Y. Tao, J. Am. Chem. Soc., 132, 13160 (2010).CrossRefGoogle Scholar
  21. (21).
    J. T. Rogers, K. Schmidt, M. F. Toney, E. J. Kramer, and G. C. Bazan, Adv. Mater., 23, 2284 (2011).CrossRefGoogle Scholar
  22. (22).
    I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater., 5, 328 (2006).CrossRefGoogle Scholar
  23. (23).
    Z. Li, L. Huo, X. Guo, W. Yong, S. Zhang, and H. Fan, Polymer, 54, 6150 (2013).CrossRefGoogle Scholar
  24. (24).
    D. Chandran, T. Marszalek, W. Zajaczkowski, P. K. Madathil, R. K. Vijayaraghavan, Y.-H. Koh, S.-Y. Park, J. R. Ochsmann, W. Pisula, and K.-S. Lee, Polymer, 73, 205 (2015).CrossRefGoogle Scholar
  25. (25).
    H. Wang, Y. Zhu, Z. Liu, L. Zhang, J. Chen, and Y. Cao, Org. Electron., 31, 1 (2016).CrossRefGoogle Scholar
  26. (26).
    C. Gao, Z. Qiao, K. Shi, S. Chen, Y. Li, G. Yu, X. Li, and H. Wang, Org. Electron., 38, 245 (2016).CrossRefGoogle Scholar
  27. (27).
    F. Yang, C. Li, J. Zhang, G. Feng, Z. Wei, and W. Li, Org. Electron., 37, 366 (2016).CrossRefGoogle Scholar
  28. (28).
    I.-B. Kim, D. Khim, S.-Y. Jang, J. Kim, B.-K. Yu, Y.-A Kim, and D.-Y. Kim, Org. Electron., 26, 251 (2015).CrossRefGoogle Scholar
  29. (29).
    J. R. Ochsmann, D. Chandran, D. W. Gehrig, H. Anwar, P. K. Madathil, K.-S. Lee, and F. Laquai, Macromol. Rapid Commun., 36, 1122 (2015).CrossRefGoogle Scholar
  30. (30).
    S.-Y. Jang, I.-B. Kim, J. Kim, D. Khim, E. Jung, B. Kang, B. Lim, Y.-A Kim, Y. H. Jang, K. Cho, and Dong-Yu Kim, Chem. Mater., 26, 6907 (2014).CrossRefGoogle Scholar
  31. (31).
    Z. Fei, P. Pattanasattayavong, Y. Han, B. C. Schroeder, F. Yan, R. J. Kline, T. D. Anthopoulos, and M. Heeney, J. Am. Chem. Soc., 136, 15154 (2014).CrossRefGoogle Scholar
  32. (32).
    Y.-H. Ha, J. E. Lee, M.-C. Hwang, Y. J. Kim, J.-H. Lee, C. E. Park, Y.-H. Kim, Macromol. Res., 24, 457 (2016).CrossRefGoogle Scholar
  33. (33).
    L. S. Fuller, B. Iddon, and K. A. Smith, J. Chem. Soc., Perkin Trans. 1, 1997, 3465.Google Scholar
  34. (34).
    P. Coppo, C. Domenico, S. G. Yeates, and M. L. Turner, Macromolecules, 36, 2705 (2003).CrossRefGoogle Scholar
  35. (35).
    E. Lim, B. J. Jung, J. Lee, H. K. Shim, J. I. Lee, Y. S. Yang, and L. M. Do, Macromolecules, 38, 4531 (2005).CrossRefGoogle Scholar
  36. (36).
    J. Peet, J. Kim, NE. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater., 6, 497 (2007).CrossRefGoogle Scholar
  37. (37).
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 4, 864 (2005).CrossRefGoogle Scholar
  38. (38).
    Y. Li, Y. Chen, X. Liu, Z. Wang, X. Yang, Y. Tu, and X. Zhu, Macromolecules, 44, 6370 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Pramod Kandoth Madathil
    • 1
    • 3
  • Shinuk Cho
    • 2
  • Sinil Choi
    • 1
  • Tae-Dong Kim
    • 1
  • Kwang-Sup Lee
    • 1
    Email author
  1. 1.Department of Advanced MaterialsHannam UniversityDaejeonKorea
  2. 2.Department of Physics and EHSRCUniversity of UlsanUlsanKorea
  3. 3.Department of ChemistryChrist UniversityBangaloreIndia

Personalised recommendations