Advertisement

Preparation, Structure, and Properties of Sn-Functionalized Star-Shaped Styrene-Isoprene-Butadiene Copolymer

  • Xin-he Kang
  • Shu-qin Liu
  • Lin Xu
  • Nini Wang
Article
  • 26 Downloads

Abstract

A new kind of Sn-functionalized star-shaped styrene-isoprene-butadiene copolymer (Sn-SIBR) was synthesized using tin-containing organo-lithium (Sn-Li) as an initiator, tetrahydrofufury ethyl ether (ETE) and sodium dodecyl benzene sulfonate (SDBS) as polar modifiers by anionic polymerization. The kinetics of terpolymerization were studied, the microstructure, the glass transition temperature (Tg), and molecular structure of Sn-SIBR were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC), respectively. The polymerization rate of the monomers and NMR results show that random Sn-SIBR are being produced in the presence of ETE and SDBS. NMR results also show that the mass fraction of Total1,2 (the sum of Bd1,2 and Ip1,2) unit and Ip3,4 unit and the Tg of copolymers increase with the increase of ETE dosage or the decrease of polymerization temperature. However, the effects of SDBS dosage on them are not obvious. Mechanical and dynamic properties indicate that Sn-SIBR has a low rolling resistance and excellent wet skid resistance as well as good mechanical properties, and could satisfy the requirements of the rubber for high performance tire tread.

Keywords

tin-containing organo-lithium styrene-isoprene-butadiene copolymer microstructure glass transition temperature tetrahydrofufury ethyl ether sodium dodecyl benzene sulfonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Y. Bai, S. H. Zhao, Y. Y. Tong, X. Y. Zhang, X. Liu, and M. Tian, J. Appl. Polym. Sci., 128, 2516 (2013).CrossRefGoogle Scholar
  2. (2).
    J. H. Ma, L. Q. Zhang, and Y. P. Wu, Polym. Bull., 22, 380 (2014).Google Scholar
  3. (3).
    S. Zhang, S. H. Zhao, X. Y. Zhang, L. Q. Zhang, and Y. P. Wu, J. Appl. Polym. Sci., 131, 596 (2014).Google Scholar
  4. (4).
    X. Liu, S. H. Zhao, X. Y. Zhang, X. L. Li, and Y. Bai, Polymer, 55, 1964 (2014).CrossRefGoogle Scholar
  5. (5).
    Y. P. Wu, J. L. Li, H. D. Zhou, and J. M. Chen, Mater. Prot., 49, 56 (2016).Google Scholar
  6. (6).
    A. F. Halasa, J. Prentis, B. Hsu, and C. Jasiunas, Polymer, 46, 4166 (2005).CrossRefGoogle Scholar
  7. (7).
    D. Y. Bang, D. Y. Shin, S. Lee, and M. H. Moon, J. Chromatogr. A., 1147, 200 (2007).CrossRefPubMedGoogle Scholar
  8. (8).
    L. Wang, S. H. Zhao, A. Li, and X. Y. Zhang, Polymer, 51, 2084 (2010).CrossRefGoogle Scholar
  9. (9).
    Q. Z. Liu, H. G. Zhao, H. H. Hu, G. B. Gong, and F. H. Li, China Synth. Rubber Ind., 37, 144 (2014).Google Scholar
  10. (10).
    Z. Z. Tian, G. B. Gong, J. Dong, H. Q. Zhang, T. J. Song, and H. P. Tao, Contemp. Chem. Ind., 44, 2638 (2015).Google Scholar
  11. (11).
    Y. R. Wang, G. H. Li, L. Ying, X. Yang, and M. C. Gu, J. Appl. Polym. Sci., 88, 1049 (2003).CrossRefGoogle Scholar
  12. (12).
    Z. S. Wang, Y. R. Wang, Y. Li, H. D. Xu, Y. Ren, and C. Q. Zhang, J. Appl. Polym. Sci., 102, 5848 (2006).CrossRefGoogle Scholar
  13. (13).
    K. H. Nordsiek, Kautsch. Gummi Kunstst., 38, 178 (1985).Google Scholar
  14. (14).
    M. Y. Liao, Y. Gao, M. H. Jin, W. S. Lv, F. Tai, C. Q. Li, H. B. Li, and A. M. Liang, China Elastomerics, 22, 1 (2012).Google Scholar
  15. (15).
    M. Y. Liao, Q. F. Wang, N. N. Wang, L. Xu, C. Q. Li, and A. M. Liang, Polym. Sci. Ser. B, 56, 753 (2014).CrossRefGoogle Scholar
  16. (16).
    H. H. Liu, S. H. Zhao, and X. Y. Zhang, China Synth. Rubber Ind., 39, 265 (2016).Google Scholar
  17. (17).
    X. H. Kang, S. Q. Liu, L. Xu, X. Wang, and C. Q. Li, China Synth. Rubber Ind., 41, 73 (2018).Google Scholar
  18. (18).
    H. D. Feng, X. Y. Zhang, and S. H. Zhao, J. Appl. Polym. Sci., 110, 228 (2008).CrossRefGoogle Scholar
  19. (19).
    H. D. Feng, X. Y. Zhang, and S. H. Zhao, J. Appl. Polym. Sci., 111, 602 (2009).CrossRefGoogle Scholar
  20. (20).
    Y. B. Xu, N. N. Wang, G. Z. Yu, L. Xu, and C. Q. Li, Adv. Mater. Res., 150, 805 (2010).CrossRefGoogle Scholar
  21. (21).
    K. Ntetsikas, Y. Alzahrany, G. Polymeropoulos, P. Bilalis, Y. Gnanou, and N. Hadjichristidis, Polymer, 9, 538 (2017).CrossRefGoogle Scholar
  22. (22).
    B. Seo, H. Kim, H. J. Paik, G. H. Kwag, and W. Kim, Macromol. Res., 21, 738 (2013).CrossRefGoogle Scholar
  23. (23).
    B. Seo, K. Kim, H. Lee, J. Y. Lee, G. H. Kwag, and W. Kim, Macromol. Res., 23, 466 (2015).CrossRefGoogle Scholar
  24. (24).
    Q. Y. Wang, H. W. Ma, W. Sang, L. Han, P. B. Liu, H. Y. Shen, W. Huang, X. C. Gong, L. C. Yang, Y. R. Wang, and Y. Li, Polym. Chem., 7, 3090 (2016).CrossRefGoogle Scholar
  25. (25).
    L. C. Yang, H. W. Ma, L. Han, X. Y. Hao, P. B. Liu, H. Y. Shen, and Y. Li, Polym. Chem., 9, 108 (2017).CrossRefGoogle Scholar
  26. (26).
    H. W. Ma, L. Han, and Y. Li, Macromol. Chem. Phys., 218, 1600420 (2017).Google Scholar
  27. (27).
    A. F. Halasa, C. Jusinas, W. L. Hsu, and D. J. Zanzig, Eur. Polym. J., 46, 2013 (2010).CrossRefGoogle Scholar
  28. (28).
    A. F. Halasa, C. Jusinas, B. Hsu, S. Henning, and K. S. Seo, J. Appl. Polym. Sci., 127, 2119 (2013).CrossRefGoogle Scholar
  29. (29).
    J. M. Lu, X. Y. Zhang, S. H. Zhao, and W. T. Yang, J. Appl. Polym. Sci., 104, 3917 (2007).CrossRefGoogle Scholar
  30. (30).
    J. M. Lu, X. Y. Zhang, S. H. Zhao, and W. T. Yang, J. Appl. Polym. Sci., 104, 3924 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringChina University of Mining and Technology (Beijing)BeijingP. R. China
  2. 2.Yanshan Branch, Beijing Research Institute of Chemical industrySINOPEC, National Engineering Research Center for Synthesis of Novel Rubber and Plastic MaterialsBeijingP. R. China

Personalised recommendations