Advertisement

Macromolecular Research

, Volume 26, Issue 6, pp 500–505 | Cite as

Impact of Topology of Alkoxy Side Chain in Alkoxyphenylthiophene Subsituted Benzodithiophene Based 2D Conjugated Low Bandgap Polymers on Photophysical and Photovoltaic Properties

  • Kakaraparthi Kranthiraja
  • Ho-Yeol Park
  • Kumarasamy Gunasekar
  • Won-Tae Park
  • Yong-Young Noh
  • Yeong-Soon Gal
  • Jong Hun Moon
  • Jin Yong LeeEmail author
  • Sung-Ho JinEmail author
Article

Abstract

We report a new series of low band gap (LBG) polymers (P1-P4), in which para or meta- alkoxyphenylthiophene (APTh) substituted benzodithiophene and 2,5-ethylhexyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione or 2-ethylhexyl-4,6-dibromo-3-fluorothieno[3,4-b]thiophene-2-carboxylate are key repeating units. All the polymers showed broad absorption profiles over 900 nm with reduced optical band gaps (E g opt ). Interestingly, the straightforward modification (exchanging the topology of alkoxy side chain on phenyl group of APTh in donor unit) brought considerable changes in photophysical and photovoltaic properties of new polymers. In particular, meta-substituted polymers (P2, P4) showed reduced E g opt (1.26, 1.41 eV), deep highest occupied molecular orbitals (HOMOs) (-5.23, -5.28 eV) than para-substituted polymers P1, P3 (E g opt =1.33, 1.44 eV; HOMOs=-5.19, -5.20 eV). Furthermore, the optimized P2 and P4 based devices delivered an enhanced power conversion efficiency (PCE) of 4.39 and 4.33%, with open-circuit voltage (V oc ) of 0.71 and 0.79 V, respectively, which are higher than P1 (PCE of 2.95 with V oc of 0.65) and P3 (PCE of 2.33% with V oc of 0.69 V) based devices.

Keywords

low band gap polymers polymer solar cells polymer filed effect transistors topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Chem. Mater., 115, 12666 (2015).Google Scholar
  2. (2).
    H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, and J. Hou, Chem. Mater., 116, 7397 (2016).Google Scholar
  3. (3).
    H.-J. Kim, J.-H. Kim, I. K. Durga, D. Punnoose, N. Kundakarla, A. E. Reddy, and S. S. Rao, New J. Chem., 40, 9176 (2016).CrossRefGoogle Scholar
  4. (4).
    Y.-H. Ha, J. E. Lee, M.-C. Hwang, Y.-J. Kim, J.-H. Lee, C. E. Park, and Y.-H. Kim Macromol. Res., 24, 457 (2016).CrossRefGoogle Scholar
  5. (5).
    W. Jang, S. Ahn, S. I. Ahn, S. Y. Park, H. Son, and D. H. Wang, Macromol. Res., 24, 483 (2016).CrossRefGoogle Scholar
  6. (6).
    J. Y. Kim, Y. U. Kim, H. J. Kim, H. A. Um, J. Shin, M. J. Cho, and D. H. Choi, Macromol. Res., 4, 980 (2016).CrossRefGoogle Scholar
  7. (7).
    S. Somasundaram, S. Jeon, and S. Park, Macromol. Res., 24, 226 (2016).CrossRefGoogle Scholar
  8. (8).
    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, Nat. Energy, 1, 15027 (2016).CrossRefGoogle Scholar
  9. (9).
    S. Song, K. Kranthiraja, J. Heo, T. Kima, B. Walker, S.-H. Jin, and J. Y. Kim, Adv. Energy Mater. 7, 1700782 (2017).CrossRefGoogle Scholar
  10. (10).
    K. Kranthiraja, K. Gunasekar, H. Kim, A.-N. Cho, N.-G. Park, S. Kim, B. J. Kim, R. Nishikubo, A. Saeki, M. Song, and S.-H. Jin, Adv. Mater., 29, 1700183 (2017).CrossRefGoogle Scholar
  11. (11).
    W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, Adv. Mater., 29, 1604059 (2017).CrossRefGoogle Scholar
  12. (12).
    L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You, and Y. Yang, Adv. Mater., 25, 825 (2013).CrossRefPubMedGoogle Scholar
  13. (13).
    M. Li, K. Geo, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.-L. Yip, X. Peng, Y. Cao, and Y. Chen, Nat. Photon., 11, 85 (2017).CrossRefGoogle Scholar
  14. (14).
    Q. An, F. Zhang, J. Zhang, W. Tang, Z. Deng, and B. Hu, Energy Environ. Sci., 9, 281 (2016).CrossRefGoogle Scholar
  15. (15).
    J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, Prog. Polym. Sci., 38, 1909 (2013).CrossRefGoogle Scholar
  16. (16).
    R. S. Ashraf, I. Meager, M. Nikolka, M. Kirkus, M. Planells, B. C. Schroder, S. Holliday, M. Hurhangee, C. B. Nielsen, H. Sirringhaus, and I. McCulloch, J. Am. Chem. Soc., 137, 1314 (2015).CrossRefPubMedGoogle Scholar
  17. (17).
    K. H. Hendriks, W. Li, M. M. Wienk, and R. A. Janssen, J. Am. Chem. Soc., 136, 12130 (2014).CrossRefPubMedGoogle Scholar
  18. (18).
    J. W. Jung, F. Liu, T. P. Russell, and W. H. Jo, Energy Environ. Sci., 5, 6857 (2012).CrossRefGoogle Scholar
  19. (19).
    K. Kranthiraja, K. Gunasekar, N. Chakravarthi, M. Song, J. H. Moon, J. Y. Lee, I.-N. Kang, and S.-H. Jin, Dyes Pigm., 123, 100 (2015).CrossRefGoogle Scholar
  20. (20).
    K. Kranthiraja, K. Gunasekar, W. Cho, Y. G. Park, J. Y. Lee, Y. Shin, I.-N. Kang, A. Kim, H. Kim, B.S. Kim, and S.-H. Jin, Macromolecules, 47, 7060 (2014).CrossRefGoogle Scholar
  21. (21).
    Y. Huang, M. Zhang, L. Ye, X. Guo, C. C. Han, Y. Li, and J. Hou, J. Mater. Chem., 22, 5700 (2012).CrossRefGoogle Scholar
  22. (22).
    J. Mei and Z. Bao, Chem. Mater., 26, 604 (2014).CrossRefGoogle Scholar
  23. (23).
    J. E. Lee, T. K. An, and Y.-H. Kim, Macromol. Res., 24, 629 (2016).CrossRefGoogle Scholar
  24. (24).
    K. C. Lee, W.-T. Park, Y.-Y. Noh, and C. Yang, ACS Appl. Mater. Interfaces, 6, 4872 (2014).CrossRefGoogle Scholar
  25. (25).
    J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, and A. J. Heeger, Appl. Phys. Lett., 92, 243308 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kakaraparthi Kranthiraja
    • 1
  • Ho-Yeol Park
    • 1
  • Kumarasamy Gunasekar
    • 1
  • Won-Tae Park
    • 2
  • Yong-Young Noh
    • 2
  • Yeong-Soon Gal
    • 3
  • Jong Hun Moon
    • 4
  • Jin Yong Lee
    • 4
    Email author
  • Sung-Ho Jin
    • 1
    Email author
  1. 1.Department of Chemistry Education, Graduate Department of Chemical Materials and Institute for Plastic Information and Energy MaterialsPusan National UniversityBusanKorea
  2. 2.Department of Energy and Materials EngineeringDongguk UniversitySeoulKorea
  3. 3.Department of Fire SafetyKyungil UniversityGyeongsanKorea
  4. 4.Department of ChemistrySungkyunkwan UniversitySuwon, GyeonggiKorea

Personalised recommendations