Macromolecular Research

, Volume 26, Issue 3, pp 226–232 | Cite as

High-Efficiency Flexible and Foldable Paper-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and Poly(vinyl alcohol) as Conducting Agent and Polymer Matrix

Article
  • 23 Downloads

Abstract

For the first time, common printing paper is converted to electrode for high-performance flexible and foldable electrochemical supercapacitor using water-dispersible conductive polymer, polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI-PAAMPSA) and poly(vinyl alcohol) (PVA) as conducting agent and polymer matrix, respectively. PANI-PAAMPSA is used to convert insulating paper to conductive substrate while PVA provides ion channels for electrolyte as well as mechanical durability for paper substrate. The paper-based supercapacitors exhibit excellent electrochemical energy storage capability. The maximum mass and area specific capacitances of the paper-based supercapacitors reached up to 41 F g-1 and 45 mF cm-2 at 20 mV s-1, respectively. In addition, the PANI-PAAMPSA/PVA/paper-based supercapacitors demonstrate high mechanical durability and flexibility during the bending tests. The specific capacitance of the paper-based supercapacitors are changed up to 16 % compared to the initial value as they are bent progressively from 0° to 100°. The excellent electrochemical stability of the paper-based supercapacitors is attributed to high water dispersibility and conductivity of PANI-PAAMPSA. The high mechanical durability is attributed to employment of PVA as robust polymer matrix allowing for ion channels of electrolyte. Our work can open up opportunities of next-generation paper-based electronics and energy storage devices.

Keywords

polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) poly(vinyl alcohol) paper supercapacitor energy storage devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6062_MOESM1_ESM.pdf (411 kb)
Supporting Information

References

  1. (1).
    L. B. Hu and Y. Cui, Energy Environ. Sci., 5, 6423 (2012).CrossRefGoogle Scholar
  2. (2).
    Y. J. Kang, H. Chung, C. H. Han, and W. Kim, Nanotechnology, 23, 065401 (2012).CrossRefGoogle Scholar
  3. (3).
    P. Andersson, D. Nilsson, P.O. Svensson, M. Chen, A. Malmström, T. Remonen, T. Kugler, and M. Berggren, Adv. Mater., 14, 1460 (2002).CrossRefGoogle Scholar
  4. (4).
    A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Angew. Chem. Int. Ed., 46, 1318 (2007).CrossRefGoogle Scholar
  5. (5).
    F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, Appl. Phys. Lett., 84, 2673 (2004).CrossRefGoogle Scholar
  6. (6).
    P. Andersson, D. Nilsson, P.-O. Svensson, M. Chen, A. Malmström, T. Remonen, T. Kugler, and M. Berggren, Adv. Mater., 14, 1460 (2002).CrossRefGoogle Scholar
  7. (7).
    Y.-H. Kim, D.-G. Moon, and J.-I. Han, IEEE Electron Device Lett., 25, 702 (2004).CrossRefGoogle Scholar
  8. (8).
    L. Wang, W. Chen, D. Xu, B. S. Shim, Y. Zhu, F. Sun, L. Liu, C. Peng, Z. Jin, and C. Xu, Nano Lett., 9, 4147 (2009).CrossRefGoogle Scholar
  9. (9).
    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A., 106, 21490 (2009).CrossRefGoogle Scholar
  10. (10).
    L. Y. Yuan, X. Xiao, T. P. Ding, J. W. Zhong, X. H. Zhang, Y. Shen, B. Hu, Y. H. Huang, J. Zhou, and Z. L. Wang, Angew. Chem. Int. Ed., 51, 4934 (2012).CrossRefGoogle Scholar
  11. (11).
    J. E. Yoo, J. L. Cross, T. L. Bucholz, K. S. Lee, M. P. Espe, and Y.-L. Loo, J. Mater. Chem., 17, 1268 (2007).CrossRefGoogle Scholar
  12. (12).
    G. Q. Zhang and X. G. Zhang, Solid State Ionics, 160, 155 (2003).CrossRefGoogle Scholar
  13. (13).
    H. Gao and K. Lian, J. Power Sources, 196, 8855 (2011).CrossRefGoogle Scholar
  14. (14).
    J. Y. Kim, C. S. Lee, J. H. Han, J. W. Cho, and J. Bae, Electrochem. Solid-State Lett., 14, A56 (2011).Google Scholar
  15. (15).
    D. S. Patil, J. S. Shaikh, D. S. Dalavi, S. S. Kalagi, and P. S. Patil, Mater. Chem. Phys., 128, 449 (2011).CrossRefGoogle Scholar
  16. (16).
    J. E. Yoo, Understanding the Processing-Structure-Property Relationships of Water-Dispersible, Conductive Polyaniline, in Chemical Engineering, the University of Texas at Austin, the University of Texas at Austin, Ph. D. Dissertation, 2009, p 250.Google Scholar
  17. (17).
    J. Tarver, J. E. Yoo, T. J. Dennes, J. Schwartz, and Y.-L. Loo, Chem. Mater., 21, 280 (2008).CrossRefGoogle Scholar
  18. (18).
    M. Kaempgen, J. Ma, G. Gruner, G. Wee, and S. G. Mhaisalkar, Appl. Phys. Lett., 90, 264104 (2007).CrossRefGoogle Scholar
  19. (19).
    Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S. M. Lee, and H. Lee, Adv. Mater., 25, 4437 (2013).CrossRefGoogle Scholar
  20. (20).
    K. S. Ryu, Y. Lee, K.-S. Han, Y. J. Park, M. G. Kang, N.-G. Park, and S. H. Chang, Solid State Ionics, 175, 765 (2004).CrossRefGoogle Scholar
  21. (21).
    K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang, J. Power Sources, 103, 305 (2002).CrossRefGoogle Scholar
  22. (22).
    W.-C. Chen, T.-C. Wen, and H. Teng, Electrochim. Acta, 48, 641 (2003).CrossRefGoogle Scholar
  23. (23).
    L. Zhang and G. Shi, J. Phys. Chem., 115, 17206 (2011).Google Scholar
  24. (24).
    C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, and D. Sheng Su, Chem. Commun. (Camb), 48, 7149 (2012).CrossRefGoogle Scholar
  25. (25).
    X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater., 23, 2833 (2011).CrossRefGoogle Scholar
  26. (26).
    Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zhang, Y. Denis, C. M. Li, and T. Yu, J. Mater. Chem., 22, 8634 (2012).CrossRefGoogle Scholar
  27. (27).
    X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, J. Power Sources, 216, 290 (2012).CrossRefGoogle Scholar
  28. (28).
    S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, and Q. Yan, Adv. Funct. Mater., 24, 2155 (2014).CrossRefGoogle Scholar
  29. (29).
    M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett., 9, 1872 (2009).CrossRefGoogle Scholar
  30. (30).
    B. Dong, B.-L. He, C.-L. Xu, and H.-L. Li, Mater. Sci. Eng. B: Adv., 143, 7 (2007).CrossRefGoogle Scholar
  31. (31).
    E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Appl. Phys. Lett., 77, 2421 (2000).CrossRefGoogle Scholar
  32. (32).
    H. Niu, D. Zhou, X. Yang, X. Li, Q. Wang, and F. Qu, J. Mater. Chem. A, 3, 18413 (2015).CrossRefGoogle Scholar
  33. (33).
    Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Phys. Chem. Chem. Phys., 13, 17615 (2011).CrossRefGoogle Scholar
  34. (34).
    M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).CrossRefGoogle Scholar
  35. (35).
    Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, Carbon, 49, 573 (2011).CrossRefGoogle Scholar
  36. (36).
    A. Claye, J. E. Fischer, and A. Métrot, Chem. Phys. Lett., 330, 61 (2000).CrossRefGoogle Scholar
  37. (37).
    S. Ng, J. Wang, Z. Guo, J. Chen, G. Wang, and H. K. Liu, Electrochim. Acta, 51, 23 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nano-physicsGachon UniversitySeongnam, GyeonggiKorea

Personalised recommendations