Advertisement

Macromolecular Research

, Volume 26, Issue 2, pp 204–209 | Cite as

Nucleic Acid-Binding Fluorochromes and Nanoparticles: Structural Aspects of Binding Affinity and Fluorescence Intensity

  • Chul-Kyu Park
  • Sung Kil Hong
  • Yong Ho Kim
  • Hoonsung ChoEmail author
Article
  • 71 Downloads

Abstract

This study was conducted to determine the relationship between dye structure, particularly the structural charge and flexibility, and binding affinity. We also investigated the effect of multivalency on the maximum fluorescence intensity by conjugating varying numbers of monovalent fluorochromes on nanoparticles. Fluorochrome-conjugated nanoparticles were synthesized by conjugating N-hydroxysuccinimide ester of quinolinium,4-[(3-methyl-2(3H)-benzothiazolylidene)methyl]- 1-[3-(trimethylammonio)propyl]-,iodide (TO-PRO 1 NHS ester) into aminated nanoparticles. The half maximum effective concentration (EC50) of DNA-binding fluorochromes and fluorochrome-conjugated nanoparticles for double- stranded nucleic acid (dsDNA) was investigated by fluorescence. Two important factors regulating the binding characteristics of fluorochromes were studied: the number of positive charges and the structural flexibility. Positive charge enhancement of binding affinity was observed in various systems. TO-PRO 1, which has two positive charges, showed higher binding affinity than TO. Rigid structured dyes, propidium iodide and 4′,6-diamidino-2-phenylindole (DAPI), exhibited significantly lower maximum fluorescence than TO-PRO 1, even though they both have two positive charges. The dye with three positive charges, SYTOX Green, showed higher binding affinity than TO-PRO 1. TO-PRO 1 dimer (TO-TO), which has four positive charges, showed the highest binding affinity to DNA. Flexible dyes exhibited more than 1000-fold higher fluorescence upon binding to dsDNA. The multivalency of the fluorochromes on the nanoparticles revealed that a shorter distance between fluorochromes was related to higher maximum fluorescence intensity. The fluorescence intensity of multivalent fluorochromes was substantially dependent on the distance between the monovalent sites.

Keywords

fluorochromes DNA-binding affinity fluorescence intensity iron oxide nanoparticle multivalency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. C. Dodani, S. C. Leary, P. A. Cobine, D. R. Winge, and C. J. Chang, J. Am. Chem. Soc., 133, 8606 (2011).CrossRefGoogle Scholar
  2. (2).
    T. J. Liegler, W. Hyun, T. S. Yen, and D. P. Stites, Clin. Diagn. Lab. Immunol., 2, 369 (1995).Google Scholar
  3. (3).
    H.-J. Guchelaar, I. Vermes, R. P. Koopmans, C. P. M. Reutelingsperger, and C. Haanen, Cancer Chemother. Pharmacol., 42, 77 (1998).CrossRefGoogle Scholar
  4. (4).
    L. Galluzzi and G. Kroemer, Cell, 135, 1161 (2008).CrossRefGoogle Scholar
  5. (5).
    T. V. Berghe, N. Vanlangenakker, E. Parthoens, W. Deckers, M. Devos, N. Festjens, C. J. Guerin, U. T. Brunk, W. Declercq, and P. Vandenabeele, Cell Death Differ., 17, 922 (2010).CrossRefGoogle Scholar
  6. (6).
    I. Lubitz, D. Zikich, and A. Kotlyar, Biochemistry, 49, 3567 (2010).CrossRefGoogle Scholar
  7. (7).
    S. C. Benson, R. A. Mathies, and A. N. Glazer, Nucleic Acids Res., 21, 5720 (1993).CrossRefGoogle Scholar
  8. (8).
    H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies, and A. N. Glazer, Nucleic Acids Res., 20, 2803 (1992).CrossRefGoogle Scholar
  9. (9).
    J. B. Wu, C. Shao, X. Li, C. Shi, Q. Li, P. Hu, Y.-T. Chen, X. Dou, D. Sahu, W. Li, H. Harada, Y. Zhang, R. Wang, H. E. Zhau, and L. W. K. Chung, Biomaterials, 35, 8175 (2014).CrossRefGoogle Scholar
  10. (10).
    A. Hellebust and R. Richards-Kortum, Nanomedicine (Lond), 7, 429 (2012).CrossRefGoogle Scholar
  11. (11).
    H. Hyun, M. H. Park, E. A. Owens, H. Wada, M. Henary, H. J. M. Handgraaf, A. L. Vahrmeijer, J. V. Frangioni, and H. S. Choi, Nat. Med., 21, 192 (2015).CrossRefGoogle Scholar
  12. (12).
    X. Yang, C. Shi, R. Tong, W. Qian, H. E. Zhau, R. Wang, G. Zhu, J. Cheng, V. W. Yang, T. Cheng, M. Henary, L. Strekowski, and L. W. Chung, Clin. Cancer Res., 16, 2833 (2010).CrossRefGoogle Scholar
  13. (13).
    R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, Acc. Chem. Res., 44, 936 (2011).CrossRefGoogle Scholar
  14. (14).
    H. Zhong, R. Zhang, H. Zhang, and S. Zhang, Chem. Commun. (Camb.), 48, 6277 (2012).CrossRefGoogle Scholar
  15. (15).
    X. Yi, F. Wang, W. Qin, X. Yang, and J. Yuan, Int. J. Nanomed., 9, 1347 (2014).CrossRefGoogle Scholar
  16. (16).
    H. Gudnason, M. Dufva, D. D. Bang, and A. Wolff, Nucleic Acids Res., 35, e127 (2007).CrossRefGoogle Scholar
  17. (17).
    D. Alcantara, Y. Guo, H. Yuan, C. J. Goergen, H. H. Chen, H. Cho, D. E. Sosnovik, and L. Josephson, Angew. Chem. Int. Ed., 51, 6904 (2012).CrossRefGoogle Scholar
  18. (18).
    H. Cho, D. Alcantara, H. Yuan, R. A. Sheth, H. H. Chen, P. Huang, S. B. Andersson, D. E. Sosnovik, U. Mahmood, and L. Josephson, ACS Nano, 7, 2032 (2013).CrossRefGoogle Scholar
  19. (19).
    H. Yuan, H. Cho, H. H. Chen, M. Panagia, D. E. Sosnovik, and L. Josephson, Chem. Commun., 49, 10361 (2013).CrossRefGoogle Scholar
  20. (20).
    M. Q. Wilks, M. D. Normandin, H. Yuan, H. Cho, Y. Guo, F. Herisson, C. Ayata, D. W. Wooten, G. El Fakhri, and L. Josephson, Bioconjug. Chem., 26, 1061 (2015).CrossRefGoogle Scholar
  21. (21).
    M. Yin, Z. Li, Z. Liu, J. Ren, X. Yang, and X. Qu, Chem. Commun. (Camb.), 48, 6556 (2012).CrossRefGoogle Scholar
  22. (22).
    H. H. Chen, H. Yuan, H. Cho, Y. Feng, S. Ngoy, A. T. Kumar, R. Liao, W. Chao, L. Josephson, and D. E. Sosnovik, Theranostics, 7, 814 (2017).CrossRefGoogle Scholar
  23. (23).
    H. Cho, Y. Guo, D. E. Sosnovik, and L. Josephson, Inorg. Chem., 52, 12216 (2013).CrossRefGoogle Scholar
  24. (24).
    W. D. Wilson, F. A. Tanious, H. J. Barton, R. L. Jones, K. Fox, R. L. Wydra, and L. Strekowski, Biochemistry, 29, 8452 (1990).CrossRefGoogle Scholar
  25. (25).
    J. B. Chaires, Arch. Biochem. Biophys., 453, 26 (2006).CrossRefGoogle Scholar
  26. (26).
    M. Mammen, S.-K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 37, 2754 (1998).CrossRefGoogle Scholar
  27. (27).
    P. I. Kitov and D. R. Bundle, J. Am. Chem. Soc., 125, 16271 (2003).CrossRefGoogle Scholar
  28. (28).
    J. M. Burridge, P. Quarendon, C. A. Reynolds, and P. J. Goodford, J. Mol. Graphics, 5, 165 (1987).CrossRefGoogle Scholar
  29. (29).
    D. Xu, in Electrostatics of Nucleic Acids and Hydration Properties of the Pseudouridin Dependent Spliceosomal Branch Site Helix, Doctoral Dissertation, The Florida State University, 2007, pp 33–47.Google Scholar
  30. (30).
    B. Gaugain, J. Barbet, N. Capelle, B. P. Roques, and J. B. Le Pecq, Biochemistry, 17, 5078 (1978).CrossRefGoogle Scholar
  31. (31).
    G. L. Silva, V. Ediz, D. Yaron, and B. A. Armitage, J. Am. Chem. Soc., 129, 5710 (2007).CrossRefGoogle Scholar
  32. (32).
    A. Larsson, C. Carlsson, M. Jonsson, and B. Albinsson, J. Am. Chem. Soc., 116, 8459 (1994).CrossRefGoogle Scholar
  33. (33).
    B. L. Roth, M. Poot, S. T. Yue, and P. J. Millard, Appl. Environ. Microbiol., 63, 2421 (1997).Google Scholar
  34. (34).
    A. Fürstenberg, T. G. Deligeorgiev, N. I. Gadjev, A. A. Vasilev, and E. Vauthey, Chem. Eur. J., 13, 8600 (2007).CrossRefGoogle Scholar
  35. (35).
    B. A. Armitage, in DNA Binders and Related Subjects, M. J. Waring and J. B. Chaires, Eds., Springer, Berlin/Heidelberg, 2005, Vol. 253, pp 55–76.CrossRefGoogle Scholar
  36. (36).
    W. Beisker, E. M. Weller-Mewe, and M. Nusse, Cytometry, 37, 221 (1999).CrossRefGoogle Scholar
  37. (37).
    S. M. Yarmoluk, V. B. Kovalska, and M. Y. Losytskyy, Biotech. Histochem., 83, 131 (2008).CrossRefGoogle Scholar
  38. (38).
    N. J. A. Sloane. with the collaboration of R. H. Hardin, W. D. Smith and others, Tables of Spherical Codes, published electronically at http://neilsloane.com/packings/Google Scholar
  39. (39).
    J. Nygren, N. Svanvik, and M. Kubista, Biopolymers, 46, 39 (1998).CrossRefGoogle Scholar
  40. (40).
    S. Prodhomme, J. P. Demaret, S. Vinogradov, U. Asseline, L. Morin-Allory, and P. Vigny, J. Photochem. Photobiol. B, 53, 60 (1999).CrossRefGoogle Scholar
  41. (41).
    C. A. Van Hooijdonk, C. P. Glade, and P. E. Van Erp, Cytometry, 17, 185 (1994).CrossRefGoogle Scholar
  42. (42).
    A. Krishan, J. Cell Biol., 66, 188 (1975).CrossRefGoogle Scholar
  43. (43).
    C. D. Ockleford, B. L. Hsi, J. Wakely, R. A. Badley, A. Whyte, and W. P. Faulk, J. Immunol. Methods, 43, 261 (1981).CrossRefGoogle Scholar
  44. (44).
    J. P. Jacobsen, J. B. Pedersen, L. F. Hansen, and D. E. Wemmer, Nucleic Acids Res., 23, 753 (1995).CrossRefGoogle Scholar
  45. (45).
    L. F. P. De Castro and M. Zacharias, J. Mol. Recognit., 15, 209 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Chul-Kyu Park
    • 1
  • Sung Kil Hong
    • 2
  • Yong Ho Kim
    • 1
  • Hoonsung Cho
    • 1
    Email author
  1. 1.Department of Physiology, College of MedicineGachon UniversityIncheonKorea
  2. 2.School of Materials Science & EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations