Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polyamine-Functionalized Polydiacetylene (PDA) Vesicles for Colorimetric Sensing of Carbon Dioxide


Ocean acidification resulting from anthropogenic CO2 has led to severe threats to marine biodiversity and ecosystems. Therefore, an effective CO2 sensing system is necessary for marine environment monitoring. In this study, polyaminefunctionalized polydiacetylene was synthesized via the conjugation of 10,12-tricosadiynoic acid (TRCDA) monomers with diethylenetriamine (DETA), and its capability for CO2 detection was demonstrated. The structure of TRCDA-DETA was confirmed using nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Then, the colorimetric and fluorogenic responses of TRCDA-DETA vesicles were examined by applying CO2. A specific color transition with a colorimetric response (CR%) of 34.39±1.46 was observed within 3 min of CO2 exposure as well as detecting fluorescent response upon CO2 detection coincidently. These results indicated that TRCDA-DETA vesicles can be an effective tool for CO2 detection, and their unique properties may have potential applications in multiple fields.

This is a preview of subscription content, log in to check access.


  1. (1)

    K. M. G. Mostofa, C.-Q. Liu, W. Zhai, M. Minella, D. Vione, K. Gao, D. Minakata, T. Arakaki, T. Yoshioka, K. Hayakawa, E. Konohira, E. Tanoue, A. Akhand, A. Chanda, B. Wang, and H. Sakuga, Biogeosciences, 13, 1767 (2016).

  2. (2)

    K. J. Kroeker, R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, and J.-P. Gattuso, Global Change Biol., 19, 1884 (2013).

  3. (3)

    J. M. Guinotte and V. J. Fabry, Ann. N. Y. Acad. Sci., 1134, 320 (2008).

  4. (4)

    S. Widdicombe and J. I. Spicer, J. Exp. Mar. Biol. Ecol., 366, 187 (2008).

  5. (5)

    J. M. Sunday, K. E. Fabricius, K. J. Kroeker, K. M. Anderson, N. E. Brown, J. P. Barry, S. D. Connell, S. Dupont, B. Gaylord, J. M. Hall-Spencer, T. Klinger, M. Milazzo, P. L. Munday, B. D. Russell, E. Sanford, V. Thiyagarajan, M. L. H. Vaughan, S. Widdicombe, and C. D. G Harley, Nat. Clim. Change, 7, 81 (2016).

  6. (6)

    S.-A. Watson, J. B. Fields, and P. L. Munday, Biol. Lett., 13, 20160797 (2017).

  7. (7)

    K. J. Kroeker, E. Sanford, B. M. Jellison, and B. Gaylord, Biol. Bull., 226, 211 (2014).

  8. (8)

    A. J. Andersson and D. Gledhill, Annu. Rev. Mar. Sci., 5, 321 (2013).

  9. (9)

    M. Holcomb, A. A. Venn, E. Tambutte, D. Allemand, J. Trotter, and M. McCulloch, Sci. Rep., 4, Article No. 5207 (2014).

  10. (10)

    W. Liu, Z. Yu, X. Huang, Y. Zhi, J. Lin, H. Zhang, X. Yi, and M. He, Mar. Environ. Res., 130, 174 (2017).

  11. (11)

    C. Del Monaco, M. E. Hay, P. Gartrell, P. J. Mumby, and G. Diaz-Pulido, Sci. Rep., 7, 41053 (2017).

  12. (12)

    I. Nagelkerken, S. U. Goldenberg, C. M. Ferreira, B. D. Russell, and S. D. Connell, Curr. Biol., 27, 2177 (2017).

  13. (13)

    M. M. Ashur, N. K. Johnston, and D. L. Dixson, Integr. Comp. Biol., 57, 63 (2017).

  14. (14)

    D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, Renew. Sustainable Energy Rev., 39, 426 (2014).

  15. (15)

    R. M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 9, 82 (2015).

  16. (16)

    W. Lu, J. P. Sculley, D. Yuan, R. Krishna, and H.-C. Zou, J. Phys. Chem. C, 117, 4057 (2013).

  17. (17)

    A. P. Salvi, P. D. Vaidya, and E. Y. Kenig, Can. J. Chem. Eng., 92, 2021 (2014).

  18. (18)

    A. Hartono, E. F. da Silva, H. Grasdalen, and H. F. Svendsen, Ind. Eng. Chem. Res., 46, 249 (2007).

  19. (19)

    A. Hartono, K. A. Hoff, T. Mejdell, and H. F. Svendsen, Energy Procedia, 4, 179 (2011).

  20. (20)

    T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Weirs, C. S. Hong, and J. R. Long, J. Am. Chem. Soc., 134, 7056 (2012).

  21. (21)

    N. Zhong, H. Liu, X. Luo, M. S. AL-Marri, A. Benamor, R. Idem, P. Tontiwachwuthikul, and Z. Liang, Ind. Eng. Chem. Res., 55, 7307 (2016).

  22. (22)

    A. Hartono, E. F. da Silva, and H. F. Svendsen, Chem. Eng. Sci., 64, 3205 (2009).

  23. (23)

    K. W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, and J.-M. Kim, Macromol. Res., 14, 483 (2006).

  24. (24)

    K. W. Kim, H. Choi, G. S. Lee, D. J. Ahn, and M.-K. Oh, Colloids Surf., B, 66, 213 (2008).

  25. (25)

    M. K. Park, K. W. Kim, D. J. Ahn, and M.-K. Oh, Biosens. Bioelectron., 35, 44 (2012).

  26. (26)

    C. H. Park, J. P. Kim, S. Lee, S. W. Jeon, P. J. Yoo, and S. J. Sim, Adv. Funct. Mater., 19, 3703 (2009).

  27. (27)

    X. Chen, C. Li, M. Gratzel, R. Kostecki, and S. S. Mao, Chem. Soc. Rev., 41, 4610 (2012).

  28. (28)

    X. Sun, T. Chen, S. Huang, Li. L, and H. Peng, Chem. Soc. Rev., 39, 4244 (2010).

  29. (29)

    Q.-L. Zhu, J. Li, and Q. Xu, J. Am. Chem. Soc., 135, 17751 (2013).

  30. (30)

    R. Jelinek and M. Ritenberg, RSC Adv., 3, 21192 (2013).

  31. (31)

    R. Pimsen, A. Khumsri, S. Wacharasindhu, G. Tumcharern, and M. Sukwattanasinitt, Biosens. Bioelectron., 62, 8 (2014).

  32. (32)

    J. Hong, D. H. Park, S. Baek, S. Song, C. W. Lee, and J. M. Kim, ACS Appl. Mater. Interfaces, 7, 8339 (2015).

  33. (33)

    J. J. Barchi, D. Yun, D. Jeong, E. Cho, and S. Jung, Plos One, 10, Article No. e0143454 (2015).

  34. (34)

    S. H. Jung, H. Jang, M. C. Lim, J. H. Kim, K. S. Shin, S. M. Kim, H. Y. Kim, Y. R. Kim, and T. J. Jeon, Anal. Chem., 87, 2072 (2015).

  35. (35)

    J. Park, S. K. Ku, D. Seo, K. Hur, H. Jeon, D. Shvartsman, H. K. Seok, D. J. Mooney, and K. Lee, Chem. Commun. (Camb.), 52, 10346 (2016).

  36. (36)

    S. Dolai, S. K. Bhunia, S. S. Beglaryan, S. Kolusheva, L. Zeiri, and R. Jelinek, ACS Appl. Mater. Interfaces, 9, 2891 (2017).

  37. (37)

    D. Yao, S. Li, X. Zhu, J. Wu, and H. Tian, Chem. Commun. (Camb.), 53, 1233 (2017).

  38. (38)

    R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, and A. R. Burns, J. Phys. Condens. Matter, 16, R679 (2004).

  39. (39)

    I. Yoo, S. Song, B. Yoon, and J. M. Kim, Macromol. Rapid Commun., 33, 1256 (2012).

  40. (40)

    J. T. Wen, P. Viravathana, B. Inquel, C. Roper, and H. Tsutsui, SLAS Technol., 22, 406 (2017).

  41. (41)

    J.-P. Jeong, E. Cho, D. Yun, T. Kim, I.-S. Lee, and S. Jung, Polymers, 9, 127 (2017).

  42. (42)

    S. H. Won, J. U. Lee, and S. J. Sim, J. Nanosci. Nanotechnol., 13, 3792 (2013).

  43. (43)

    J. T. Wen, K. Bohorquez, and H. Tsutsui, Sens. Actuators B: Chem., 232, 313 (2016).

  44. (44)

    W. Zhu, J. Li, Y. J. Leong, I. Rozen, X. Qu, R. Dong, Z. Wu, W. Gao, P. H. Chung, J. Wang, and S. Chen, Adv. Mater., 27, 4411 (2015).

  45. (45)

    Q. Xu, S. Lee, Y. Cho, M. H. Kim, J. Bouffard, and J. Yoon, J. Am. Chem. Soc., 135, 17751 (2013).

  46. (46)

    S. Okada, S. Peng, W. Spevak, and D. Charych, Acc. Chem. Res., 31, 229 (1998).

  47. (47)

    S. J. Kew and E. A. H. Hall, Anal. Chem., 78, 2231 (2006).

  48. (48)

    A. A. Deckert, J. C. Horne, B. Valentine, L. Kiernan, and L. Fallon, Langmuir, 11, 643 (1995).

Download references

Author information

Correspondence to Kyung Woo Kim.

Additional information

Acknowledgment: This work was supported by the national marine biodiversity institute of Korea (MABIK) in-house program (2017M01500).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W., Lee, J.M., Kwon, Y.M. et al. Polyamine-Functionalized Polydiacetylene (PDA) Vesicles for Colorimetric Sensing of Carbon Dioxide. Macromol. Res. 26, 284–290 (2018).

Download citation


  • polydiacetylene
  • PDA vesicles
  • carbon dioxide
  • CO2 detection
  • acid-responsive