Macromolecular Research

, Volume 25, Issue 10, pp 1007–1014 | Cite as

Enhancement of gas permeability for CH4/N2 separation membranes by blending SBS to Pebax polymers

  • Panpan Guan
  • Jujie Luo
  • Wei LiEmail author
  • Ziqin SiEmail author


Three poly(ether-b-amide) (Pebax) membranes with different polyamide (PA) contents were prepared to study CH4/N2 gas separation property. The increase in CH4 and N2 gas permeability was observed with the lowering of PA content. It was attributed to the decreased fraction of impermeable crystalline PA regions and the decrease in the crystallinity of the semi-crystalline PA phase of Pebax membranes. This result is consistent with the previous reports on other gases for Pebax membranes. To lower the crystallinity and higher the CH4 permeability, 10 wt% poly(styrene-b-butadiene-b-styrene) (SBS) block copolymer was blended with Pebax. For single gas permeation test, we demonstrated that CH4 permeability of the Pebax/SBS blend membrane is 60% higher than that of Pebax, reaching 106 Barrer at 55 °C. In CH4 and N2 mixed gas permeation test, up to 26 vol% of CH4 could be obtained from passing 10 vol% CH4 of CH4/N2 mixed gas through the Pebax/SBS membranes, demonstrating that Pebax based membranes could potentially be applied to the enrichment of CH4 for the coal-bed methane (CBM).


membranes copolymers separation technique blends crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Pandey, S. Harpalani, R. Feng, J. Zhang, and Y. Liang, Fuel, 179, 114 (2016).CrossRefGoogle Scholar
  2. (2).
    S. Gowid, R. Dixon, and S. Ghani, J. Nat. Gas Sci. Eng., 27, 1495 (2015).CrossRefGoogle Scholar
  3. (3).
    M. K. Mondal, H. K. Balsora, and P. Varshney, Energy, 46, 431 (2012).CrossRefGoogle Scholar
  4. (4).
    M. Rezakazemi, A. E. Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, Prog. Polym. Sci., 39, 817 (2014).CrossRefGoogle Scholar
  5. (5).
    Q. Xin, Y. Gao, X. Wu, C. Li, T. Liu, Y. Shi, Y. Li, Z. Jiang, H. Wu, and X. Cao, J. Membr. Sci., 488, 13 (2015).CrossRefGoogle Scholar
  6. (6).
    S. Sorribas, B. Zornoza, C. Téllez, and J. Coronas, J. Membr. Sci., 452, 184 (2014).CrossRefGoogle Scholar
  7. (7).
    L. M. Robeson, J. Membr. Sci., 320, 390 (2008).CrossRefGoogle Scholar
  8. (8).
    C. Feng, X. Pang, Y. He, Y. Chen, G. Zhang, and Z. Lin, Polym. Chem., 6, 5190 (2015).CrossRefGoogle Scholar
  9. (9).
    C. Feng, X. Pang, Y. He, B. Li, and Z. Lin, Chem. Mater., 26, 6058 (2014).CrossRefGoogle Scholar
  10. (10).
    M. G. Buonomenna, W. Yave, and G. Golemme, RSC Adv., 2, 10745 (2012).CrossRefGoogle Scholar
  11. (11).
    S. Park, O. Yavuzcetin, B. Kim, M. T. Tuominen, and T. P. Russell, Small, 5, 1064 (2009).CrossRefGoogle Scholar
  12. (12).
    X. Pang, L. Zhao, C. Feng, and Z. Lin, Macromolecules, 44, 7176 (2011).CrossRefGoogle Scholar
  13. (13).
    X. Pang, C. Feng, H. Xu, W. Han, X. Xin, H. Xia, F. Qiu, and Z. Lin, Polym. Chem., 5, 2747 (2014).CrossRefGoogle Scholar
  14. (14).
    Q. Zhang, O. K. C. Tsui, B. Du, F. Zhang, T. Tang, and T. He, Macromolecules, 33, 9561 (2000).CrossRefGoogle Scholar
  15. (15).
    M. G. Buonomenna, G. Golemme, C. M. Tone, M. P. De Santo, F. Ciuchi, and E. Perrotta, Adv. Funct. Mater., 22, 1759 (2012).CrossRefGoogle Scholar
  16. (16).
    M. G. Buonomenna, G. Golemme, C. M. Tone, M. P. De Santo, F. Ciuchi, and E. Perrotta, J. Mater. Chem. A, 1, 11853 (2013).CrossRefGoogle Scholar
  17. (17).
    V. Barbi, S. S. Funari, R. Gehrke, N. Scharnagl, and N. Stribeck, Macromolecules, 36, 749 (2003).CrossRefGoogle Scholar
  18. (18).
    T. Kamal, S.-Y. Park, J.-H. Park, and Y.-W. Chang, Macromol. Res., 20, 725 (2012).CrossRefGoogle Scholar
  19. (19).
    R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, Sep. Purif. Technol., 129, 1 (2014).CrossRefGoogle Scholar
  20. (20).
    D. Zhao, J. Ren, H. Li, X. Li, and M. Deng, J. Membr. Sci., 467, 41 (2014).CrossRefGoogle Scholar
  21. (21).
    T. Li, Y. Pan, K.-V. Peinemann, and Z. Lai, J. Membr. Sci., 425-426, 235 (2013).CrossRefGoogle Scholar
  22. (22).
    L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, and C. Wang, J. Membr. Sci., 500, 66 (2016).CrossRefGoogle Scholar
  23. (23).
    V. Nafisi, and M.-B. Hägg, J. Membr. Sci., 459, 244 (2014).CrossRefGoogle Scholar
  24. (24).
    V. Nafisi and M.-B. Hägg, ACS Appl. Mater. Interfaces, 6, 15643 (2014).CrossRefGoogle Scholar
  25. (25).
    S. Feng, J. Ren, K. Hua, H. Li, X. Ren, and M. Deng, Sep. Purif. Technol., 116, 25 (2013).CrossRefGoogle Scholar
  26. (26).
    P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kacirková, and G. Clarizia, Sep. Purif. Technol., 97, 73 (2012).CrossRefGoogle Scholar
  27. (27).
    J. P. Sheth, J. Xu, and G. L. Wilkes, Polymer, 44, 743 (2003).CrossRefGoogle Scholar
  28. (28).
    J. H. Kim, S. Y. Ha, and Y. M. Lee, J. Membr. Sci., 190, 179 (2001).CrossRefGoogle Scholar
  29. (29).
    X. Pang, L. Zhao, C. Feng, R. Wu, H. Ma, and Z. Lin, Polym. Chem, 4, 2025 (2013).CrossRefGoogle Scholar
  30. (30).
    K. A. Lokhandwala, I. Pinnau, Z. He, K. D. Amo, A. R. DaCosta, J. G. Wijmans, and R. W. Baker, J. Membr. Sci., 346, 270 (2010).CrossRefGoogle Scholar
  31. (31).
    R. W. Baker and K. Lokhandwala, Ind. Eng. Chem. Res., 47, 2109 (2008).CrossRefGoogle Scholar
  32. (32).
    R. A. Zoppi, C. R. de Castro, I. V. P. Yoshida, and S. P. Nunes, Polymer, 38, 5705 (1997).CrossRefGoogle Scholar
  33. (33).
    N. Azizi, T. Mohammadi, and R. M. Behbahani, J. Nat. Gas Sci. Eng., 37, 39 (2017).CrossRefGoogle Scholar
  34. (34).
    A. Car, C. Stropnik, W. Yave, and K.-V. Peinemann, J. Membr. Sci., 307, 88 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanP. R. China

Personalised recommendations